MECHANICS OF STRUCTURE GENOME:

FILL THE GAP BETWEEN MATERIALS

GENOME AND STRUCTURAL ANALYSIS

Wenbin Yu

Director, cvfHUB Associate Director, cdmHUB CTO, AnalySwift LLC Associate Professor, Purdue/AAE

Vision/Mission/Values

- Vision: Design, manufacture, and certify advanced structures and materials by analysis.
- Mission: To advance predictive capabilities for advanced structures and materials and to train students with analysis fundamentals and job-ready skills.

> Professional Values

- We pursue **truth** because truth can set us free.
- We seek **unity** to systematically handle diversities.
- We strike for **balance** between practicality and rigor.
- We embrace humble boldness to learn from others and remain true to scholarship.

Materials Genome Initiative

MGI deliverables: properties, allowables, failure criteria for constituents (fiber, matrix), interfaces

The Challenge: Multiple Scales

Human Hair Carbon fiber

1 mm³ material block ~ **20 Million DOFs**

Bottom-up Multiscale Modeling

Top-Down Multiscale Modeling

For since the fabric of the universe is most perfect and the work of a most wise creator, nothing at all takes place in the universe in which some rule of the maximum or minimum does not appear.

-- Leonhard Euler

Typical Structural Components

Structural Analyses

Structural Models

	Kinematics	Kinetics	Constitutive Relations
3D	$\varepsilon_{ij} = \frac{1}{2}(u_{i,j} + u_{j,i})$	$\sigma_{ij,j} + f_i = 0$	$ \begin{pmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{23} \\ \sigma_{13} \\ \sigma_{12} \end{pmatrix} = \begin{bmatrix} c_{11} & c_{12} & c_{13} & c_{14} & c_{15} & c_{16} \\ c_{12} & c_{22} & c_{23} & c_{24} & c_{25} & c_{26} \\ c_{13} & c_{23} & c_{33} & c_{34} & c_{35} & c_{36} \\ c_{14} & c_{24} & c_{34} & c_{44} & c_{45} & c_{46} \\ c_{15} & c_{25} & c_{35} & c_{45} & c_{55} & c_{56} \\ c_{16} & c_{26} & c_{36} & c_{46} & c_{56} & c_{66} \end{bmatrix} \begin{pmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ \varepsilon_{23} \\ \varepsilon_{23} \\ \varepsilon_{13} \\ \varepsilon_{21} \end{pmatrix} $
2D (Plate/ shell)	$\epsilon_{\alpha\beta} = \frac{1}{2} \left(\bar{u}_{\alpha,\beta} + \bar{u}_{\beta,\alpha} \right)$ $\kappa_{\alpha\beta} = -\bar{u}_{3,\alpha\beta}$	$N_{\alpha\beta,\beta} + p_{\alpha} = 0$ $(M_{\alpha\beta,\beta} + e_{\alpha\beta}q_{\beta})_{,\alpha} + p_{3} = 0$	$\left\{\begin{array}{c}N\\M\end{array}\right\} = \begin{bmatrix}A&B\\B^T&D\end{bmatrix}\left\{\begin{array}{c}\epsilon\\\kappa\end{array}\right\}$
1D (beam)	$\gamma_{11} = \bar{u}'_1$ $\kappa_1 = \Phi'_1$ $\kappa_2 = -\bar{u}''_3$ $\kappa_3 = \bar{u}''_2$	$\frac{\mathrm{d}F_1}{\mathrm{d}x_1} + p_1 = 0$ $\frac{\mathrm{d}M_1}{\mathrm{d}x_1} + q_1 = 0$ $\frac{\mathrm{d}^2 M_2}{\mathrm{d}x_1^2} + p_3 + \frac{\mathrm{d}q_2}{\mathrm{d}x_1} = 0$ $\frac{\mathrm{d}^2 M_3}{\mathrm{d}x_1^2} - p_2 + \frac{\mathrm{d}q_3}{\mathrm{d}x_1} = 0$	$ \begin{pmatrix} F_1 \\ M_1 \\ M_2 \\ M_3 \end{pmatrix} = \begin{bmatrix} S_{11} & S_{12} & S_{13} & S_{14} \\ S_{12} & S_{22} & S_{23} & S_{24} \\ S_{13} & S_{23} & S_{33} & S_{34} \\ S_{14} & S_{24} & S_{34} & S_{44} \end{bmatrix} \begin{pmatrix} \gamma_{11} \\ \kappa_1 \\ \kappa_2 \\ \kappa_3 \end{pmatrix} $

Mechanics of Structure Genome

SG for 3D Structures

SG for Panels (Plates/Shells)

SG for Beam-like Structures

MSG for CLPT

MSG for CLPT (Cont.)

Express kinematics of the original model in terms of that of the macroscopic model and unknown warping/fluctuating functions

$$\begin{aligned} u_{i} &= u_{i}(\boldsymbol{u}, \boldsymbol{u}_{,\alpha}, W_{i}) \\ \varepsilon_{ij} &= \varepsilon_{ij}(\varepsilon_{\alpha\beta}, \kappa_{\alpha\beta}, W_{i,j}) \end{aligned}$$

Define kinematics of the macroscopic model in terms of the original model

MSG for CLPT (Cont.)

Express the energy of the original model

$$U = U(\varepsilon_{ij}) = U(\varepsilon_{\alpha\beta}, \kappa_{\alpha\beta}, w_{i,j})$$

Minimize the energy to solve fluctuating functions

$$\min_{w_i} U(\overline{\mathcal{E}}_{\alpha\beta}, \kappa_{\alpha\beta}, w_{i,j}) = \overline{U}(\overline{\mathcal{E}}_{\alpha\beta}, \kappa_{\alpha\beta})$$

MSG for Aperiodic Materials

- Kinematics
 - Displacement

 $u_i(\mathbf{x}; \mathbf{y}) = v_i(\mathbf{x}) + \varepsilon \chi_i(\mathbf{x}; \mathbf{y})$

Strain

$$\epsilon_{ij}(\mathbf{x};\mathbf{y}) = \frac{1}{2} \left[\frac{\partial u_i(\mathbf{x};\mathbf{y})}{\partial x_j} + \frac{\partial u_j(\mathbf{x};\mathbf{y})}{\partial x_i} \right] = \bar{\epsilon}_{ij} + \chi_{(i|j)} + \varepsilon \chi_{(i,j)}$$

• Kinematic equivalency constraints: average displacement and strain

$$v_{i} = \frac{1}{\Omega} \int_{\Omega} u_{i} \, \mathrm{d}\Omega \equiv \langle u_{i} \rangle \implies \langle \chi_{i} \rangle = 0$$

$$\bar{\epsilon}_{ij} \equiv \langle \epsilon_{ij} \rangle \implies \langle \chi_{(i|j)} \rangle = 0$$

MSG for Aperiodic Materials

Minimize energy discrepancy between the deformed heterogeneous material and the homogenized material

$$J = \prod_{Micro} - \prod_{Macro} - \lambda_{kl} \langle \chi_{(k|l)} \rangle - \eta_i \langle \chi_i \rangle$$

$$\delta J = 0$$

 $\Pi_{Micro} = \langle C_{ijkl} \epsilon_{ij} \epsilon_{kl} \rangle = \langle C_{ijkl} \left(\bar{\epsilon}_{ij} + \chi_{(i|j)} \right) \left(\bar{\epsilon}_{kl} + \chi_{(k|l)} \right) \rangle \qquad \Pi_{Macro} = \langle \bar{C}_{ijkl} \bar{\epsilon}_{ij} \bar{\epsilon}_{kl} \rangle$

Finite Element Implementation $\chi(x_i; y_j) = S(y_j)V(x_i)$

$$J = \frac{1}{2} \left(V^T E V + 2 V^T D_{h\epsilon} \bar{\epsilon} + \bar{\epsilon}^T D_{\epsilon\epsilon} \bar{\epsilon} \right) - \frac{1}{2} V^T \bar{D}^* V - \lambda^T D_{h\lambda}^T V$$

$$E = \left\langle \left(\Gamma_h S\right)^T D \left(\Gamma_h S\right) \right\rangle \quad D_{h\epsilon} = \left\langle \left(\Gamma_h S\right)^T D \right\rangle \quad D_{\epsilon\epsilon} = \left\langle D \right\rangle \qquad D_{h\lambda} = \left\langle \Gamma_h S \right\rangle^T$$

MSG for Aperiodic Materials

The solution

 $V = V_0 \bar{\epsilon} \qquad \chi = S V_0 \bar{\epsilon}$

Homogenized energy

$$U = \frac{1}{2}\bar{\epsilon}^{\mathrm{T}}\left(D_{\epsilon\epsilon} + 2V_0^{\mathrm{T}}D_{h\epsilon} + V_0^{\mathrm{T}}EV_0\right)\bar{\epsilon} \equiv \frac{\Omega}{2}\bar{\epsilon}^{\mathrm{T}}\bar{D}\bar{\epsilon}$$

Dehomogenization relations

$$\boldsymbol{u} = \boldsymbol{v} + \begin{bmatrix} \frac{\partial v_1}{\partial x_1} & \frac{\partial v_1}{\partial x_2} & \frac{\partial v_1}{\partial x_3} \\ \frac{\partial v_2}{\partial x_1} & \frac{\partial v_2}{\partial x_2} & \frac{\partial v_2}{\partial x_3} \\ \frac{\partial v_3}{\partial x_1} & \frac{\partial v_3}{\partial x_2} & \frac{\partial v_3}{\partial x_3} \end{bmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} + SV_0 \bar{\epsilon}$$

 $\epsilon = \bar{\epsilon} + \Gamma_h S V_0 \bar{\epsilon} \qquad \sigma = D \epsilon$

Realistic Rotor Blade

3D FEA Accuracy with FOSDT Cost

Achieving 3D elasticity accuracy at efficiency of FOSDT (Reissner-MindlinTheory)

Buckling Analysis of Stiffened Composite Panels

Buckling Analysis of Stiffened Composite Panels

1 st mode SwiftComp	Half wave number	MSG-based plate analysis	3D FEA	6 th mode
based plate	m=1 n=1	930 (0.11%)	931	U. Magachuda 4. 0.004-00 4. 1.0024-00 4. 1.0024-0024-00 4. 1.0024-00 4. 1.0024-00 4. 1.0024-00
U. Magnhude ** 012**01 ** 012**01 ** 012**01 ** 012**01	m=1 n=2	1799 (0.55%)	1809	
	m=2 n=1	3348 (1.42%)	3301	
	m=2 n=2	3743 (1.19%)	3699	
	m=2 n=3	4836 (0.71%)	4802	
	m=1 n=3	5009 (0.50%)	5034	0. 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
d th mode		U Terrhar V Terrhar		

Micromechanics Simulation Challenge

- MAC/GMC, MAC/HFGMC, DIGIMAT, Altair MDS, FVDAM, ESI/VPS, SwiftComp, 3D FEA of RVE with periodic BCs.
- Final report: <u>cdmhub.org/resources/948</u>.
- All data needed for reproducing the results: <u>cdmhub.org/members/project/mmsimulationchalleng/view</u>.
- Level I: accuracy and efficiency of linear thermoelastic properties and local fields.
- SwiftComp achieves versatility and accuracy as 3D FEA with a small fraction of its computing time.

Choice of SG

Choice of SG (cont.)

Compare with CCA model

Four Layer Cross-Ply Laminate

3D FEA

Two-Step Approach

SwiftComp Plate Analysis

SwiftComp Beam Analysis

Global Behavior

		U. 97 2000 10 20 2000 10 20 2000 10 2000 100
Method	U ₁	Absolute error
3D FEA	2.0849×10^{-4}	
SwiftComp Beam	2.0873×10^{-4}	0.1151%
SwiftComp Plate	2.0832×10^{-4}	0.0815%
ABAQUS Composite layup	2.0804×10^{-4}	0.2158%

Method	<i>U</i> ₃	Absolute error
3D FEA	2.7124×10^{-3}	
SwiftComp beam	2.7146×10^{-3}	0.0811%
SwiftComp plate	2.7084×10^{-3}	0.1475%
ABAQUS Composite layup	2.5264×10^{-3}	6.8574%

Local Stress Distribution

Local Stress Distribution

Local Stress Distribution

Efficiency

Method		CPUs	Time		
3D FEA		48	7 days 11 hr 37 min		
ABAQUS Composite Layup		1	30 sec		
SwiftComp	Homo.	1	6 sec	40 sec	
Plate Analysis	2D plate analysis	1	28 sec		
	Dehomo.	1	6 sec		
SwiftComp Beem	Homo.	1	3 min 14 sec	4 min 35 sec	
Analysis	1D beam analysis	1	0.02 sec		
	Dehomo.	1	1 min 21 sec		

Mechanics of SG & SwiftComp

- Directly connects materials genome with structural analysis
- Achieves accuracy of 3D detailed FEA at efficiency of simple engineering models
- Models composites as black aluminum, capturing details as needed and affordable
- Power conventional structural tools with accurate composites modeling

Unifies Structural Mechanics & Micromechanics

The progress of science is the discovery at each step of a new order which gives unity to what had long seemed unlike. Faraday did this when he closed the link between electricity and magnetism. Clerk Maxwell did it when he linked both with light. Einstein linked time with space, mass with energy, Science is nothing else than the search to discover unity in the wild variety of nature — or more exactly, in the variety of our experience.

Jacob Bronowski The Creative Aspects of Science

Right Results Right Away

SwiftComp[™] A Purdue Technology

Principle of Minimum Information Loss

- Virtual testing of materials
 - o Mechanical properties
 - Multifunctional properties
- Multiscale modeling of structures
 - Composite structures
 - Stiffened structures
 - Build-up structures

Structure Genome vs RVE

- Structure Genome (SG): smallest mathematical building block; structural properties (beams/plates/shells/3D bodies)
- RVE: volume entirely typical of material on average and contains a sufficient number of inclusions for effect properties independent of BCs; 3D RVE required for 3D properties
- Equivalent: 3D bodies featuring 3D periodicity

MSG, Asymptotic Homogenization (AH), & RVE Analysis

- RVE analysis with periodic BCs is the same as AH, same as MSG for 3D RVEs (in theory)
- MSG: no BCs in terms of displacements/tractions, automatically satisfying Hill-Mandel condition
- No assumptions for SG and local fields
- MSG unifies structural modeling and micromechanics
- MSG can handle partially periodic or aperiodic structures
- MSG can directly construct models for beams/plates/shells

