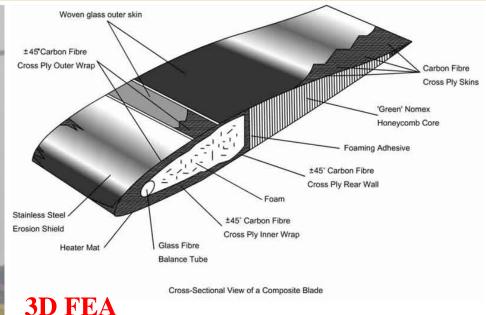
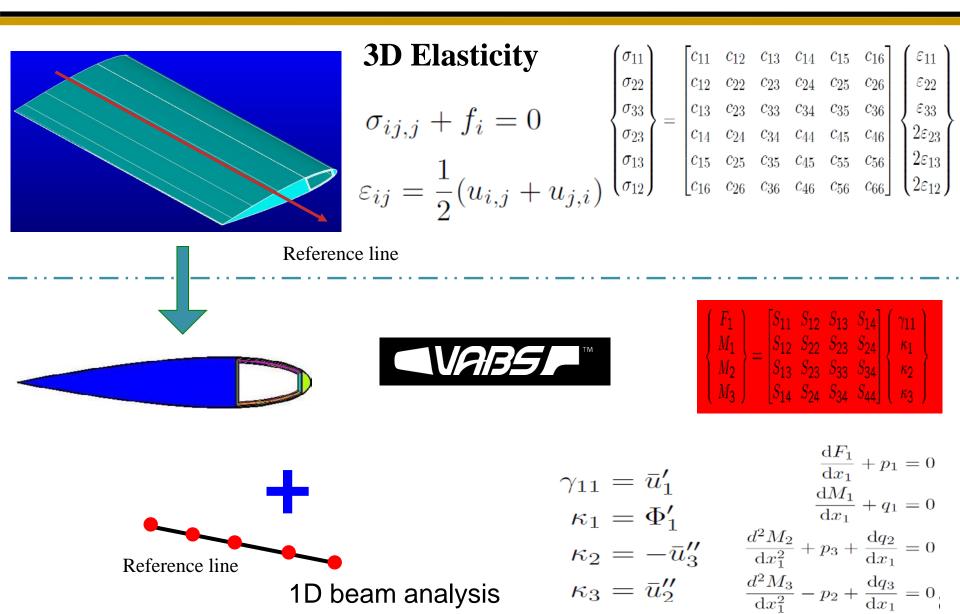


POWERING SIMPLE BEAM ELEMENTS WITH DETAILED 3D FEA FIDELITY

Wenbin Yu


CTO, AnalySwift LLC

The Problem



Length: 8.6 m Chord: 0.72 m. D-spar: 60 graphite/epoxy plies Ply thickness: 125 microns

At least one solid elements/layer 10^9 DOFs/blade Not suitable for design & optimization Smeared property approach improves efficiency but loses significant accuracy

VABS: Beam Constitutive Modeling

Introduction to VABS Theory

Minimize kinetic energy loss.

A diagonal mass matrix is possible if blade axis is at the mass center and sectional coordinates are the principal inertia axes.

$$\mathcal{K} = \frac{1}{2} \begin{cases} V_1 \\ V_2 \\ V_3 \\ \Omega_1 \\ \Omega_2 \\ \Omega_3 \end{cases}^{I} \begin{bmatrix} \mu & 0 & 0 & \mu x_{m3} & -\mu x_{m2} \\ \mu & 0 & -\mu x_{m3} & 0 & 0 \\ \mu & \mu x_{m2} & 0 & 0 \\ i_{22} + i_{33} & 0 & 0 \\ i_{22} & -i_{23} \\ i_{33} \end{bmatrix} \begin{cases} V_1 \\ V_2 \\ V_3 \\ \Omega_1 \\ \Omega_2 \\ \Omega_3 \end{cases}$$

Introduction to VABS Theory

Euler-Bernoulli model

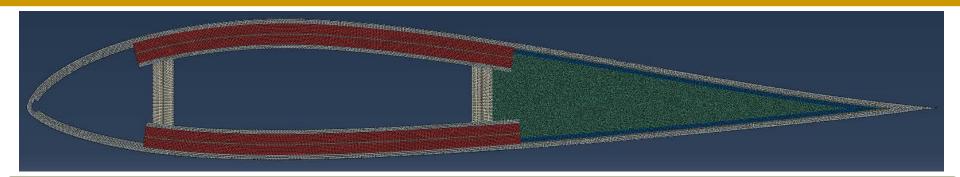
$$\begin{cases} F_1 \\ M_1 \\ M_2 \\ M_3 \end{cases} = \begin{bmatrix} S_{11} & S_{12} & S_{13} & S_{14} \\ S_{12} & S_{22} & S_{23} & S_{24} \\ S_{13} & S_{23} & S_{33} & S_{34} \\ S_{14} & S_{24} & S_{34} & S_{44} \end{bmatrix} \begin{cases} \gamma_{11} \\ \kappa_1 \\ \kappa_2 \\ \kappa_3 \end{cases}$$

Timoshenko model

$\left(F_{1} \right)$		S_{11}	S_{12}	S_{13}	S_{14}	S_{15}	S_{16}	$\left(\gamma_{11} \right)$
F_2		S ₁₂	S_{22}	S_{23}	S_{24}	S_{25}	S ₂₆	$2\gamma_{12}$
$\int F_3$	(S ₁₃	S_{23}	S_{33}	S_{34}	S_{35}	S ₃₆	$2\gamma_{13}$
M_1	$\left(\begin{array}{c} - \end{array} \right)$	S ₁₄	S_{24}	S_{34}	S_{44}	S_{45}	S ₄₆	κ_1 (
M ₂							S ₅₆	κ_2
$\left(M_{3} \right)$	J	S_{16}	S_{26}	S_{36}	S_{46}	S_{56}	S_{66}	κ_3

ID beam analysis should be changed to allow fully populated stiffness matrices.

Introduction to VABS Theory


Vlasov model: important for thin-walled beams with open sections

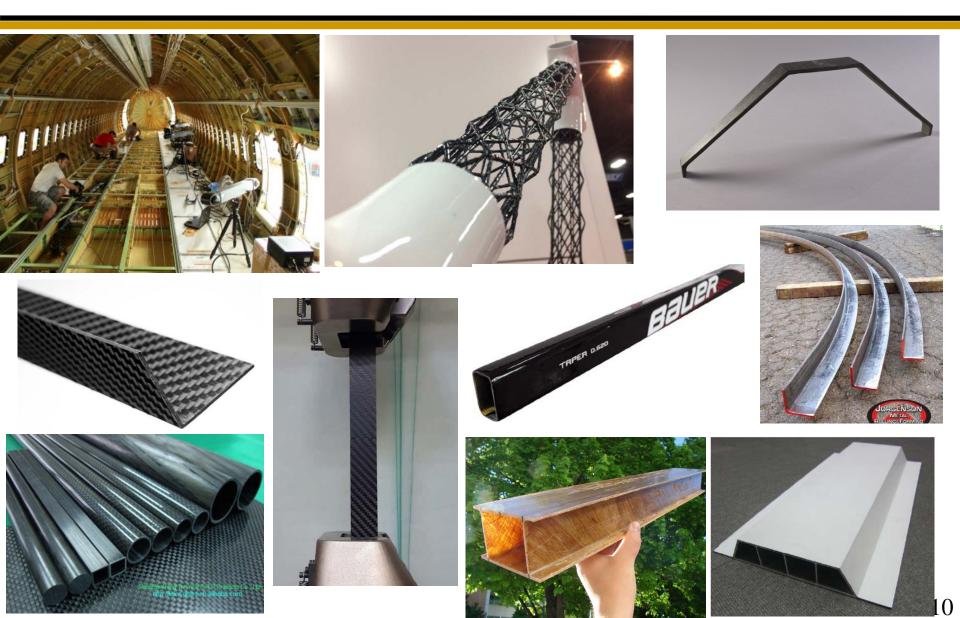
$$\begin{cases} F_1 \\ M_1 \\ M_2 \\ M_3 \\ M_\omega \end{cases} = \begin{bmatrix} S_{11} & S_{12} & S_{13} & S_{14} & S_{15} \\ S_{12} & S_{22} & S_{23} & S_{24} & S_{25} \\ S_{13} & S_{23} & S_{33} & S_{34} & S_{35} \\ S_{14} & S_{24} & S_{34} & S_{44} & S_{45} \\ S_{15} & S_{25} & S_{35} & S_{45} & S_{55} \end{bmatrix} \begin{cases} \gamma_{11} \\ \kappa_{1} \\ \kappa_{2} \\ \kappa_{3} \\ \kappa_{1}' \end{cases}$$

VABS can also

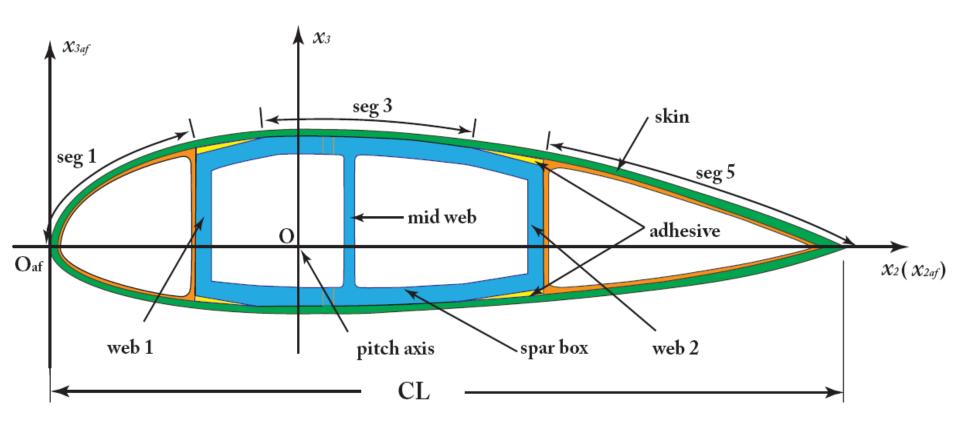
- Deal with trapeze effect, oblique sections
- Locate neutral axis, principal bending/inertia axes, shear center
- Recover 3D displacement/strain/stress
- Model beams made of smart materials (coupled thermo-elasto-electromagnetic behavior)

What Can VABS Do for You?

- VABS takes a finite element discretization of sectional geometry and material as input to calculate sectional properties, which are needed for any beam analysis code to predict global behavior. VABS also recovers 3D displacements/strains/stresses over the section.
- VABS can be used independently for structural design of beam sections (topology and material): e.g., maximize torsional stiffness while maintain desired center of gravity.
- VABS powers conventional beam elements with the fidelity of 3D detailed FEA for geometry representation and prediction with negligible additional computing time.

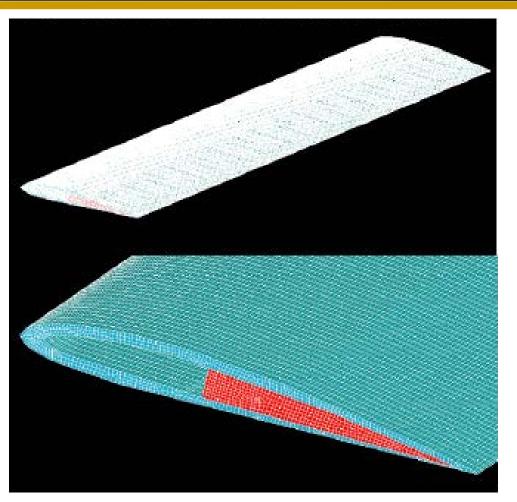

VABS: Efficient High-Fidelity Modeling of Composite Slender Structures

- A unique technology continuously funded by US Army since 1988 (28 yrs, 3 more to come).
- VABS as a Tool for Real Blade Analysis, Design, & Certification, Task 3 of Georgia Tech Vertical Lift Center of Excellence (2017-2019).
- Tool of choice for helicopter industry and wind turbine industry.
- Efficient high-fidelity solutions for slender parts: one dimension >> two other dimensions


Related Problems

Related Problems

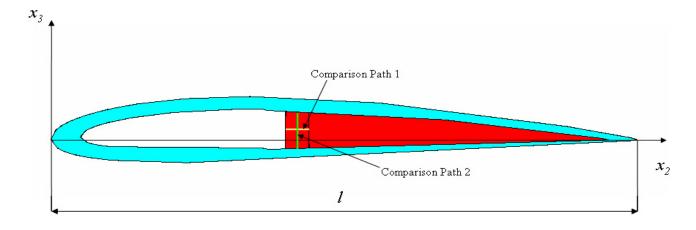
Properties of a Wind Turbine Blade



Chen, H. and Yu, W. and Capellaro, M.: "A Critical Assessment of Computer Tools for Calculating Composite Wind Turbine Blade Properties," *Wind Energy*, vol. 13, no. 6, 2010, pp. 497-516.

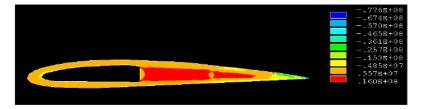
Properties of a Wind Turbine Blade

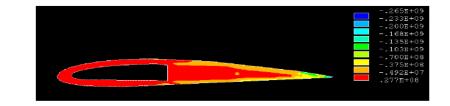
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		PreComp	CROSTAB	VABS	% Diff. (PreComp)	% Diff. (CROSTAB)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	EI_{22}	2.103E + 07	1.459E+08	1.916E + 07	9.778	661.734
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	EI_{33}	6.309E + 08	4.878E + 08	4.398E + 08	43.448	10.907
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	GJ	1.008E + 07	2.469E+07	2.167E + 07	53.479	13.950
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	EA	3.000E + 09	2.789E+09	2.387E + 09	25.664	16.826
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	S_{34}	-8.132E+06	6.010E + 07	1.210E + 07	167.204	396.632
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	S_{13}	-1.037E+06	5.216E + 08	-2.635E+07	96.065	2.079E + 03
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	S_{14}	-1.301E+08	1.685E + 08	-4.724E+08	72.459	135.671
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	S_{23}	-3.776E+05	9.002E + 09	-5.222E+04	623.105	1.724E + 07
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	S_{24}	8.746E + 06	-1.208E+09	1.422E + 06	514.904	8.504E + 04
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	S_{12}	7.522E + 05	-1.723E+09	-3.381E+07	102.225	4.996E + 03
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	μ	285.9	289.132	258.053	10.791	12.044
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	i_{22}	2.211	5.144	2.172	1.797	136.837
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	i_{33}	62.72	61.340	46.418	35.121	32.148
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	x_{m2}	0.332	0.284	0.27780	19.444	2.064
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	x_{m3}	0.027	-0.028	0.02743	1.572	201.272
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	x_{t2}	0.331	-0.0290	0.233	42.173	112.466
x_{s3} 0.028 / 0.040 30.478 /	x_{t3}	0.028	0.2273	0.029	3.287	685.174
	x_{s2}	0.287	/	0.031	813.479	/
θ -0.990 3.7919 -1.244 20.419 404.813	x_{s3}	0.028	/	0.040	30.478	/
	θ	-0.990	3.7919	-1.244	20.419	404.813


Realistic Rotor Blade

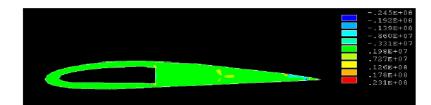
- Realistic rotor blade
- > 100°C temperature increase
- Find thermal stress
- ANSYS model using brick elements (4.8M DOFs)

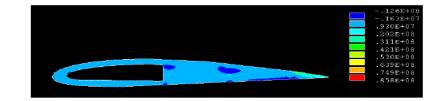
Wang, Q. and Yu, W.: "A Variational Asymptotic Approach for Thermoelastic Analysis of Composite Beams," *Advances in Aircraft and Spacecraft Science*, vol. 1, 2014, pp. 93-123.

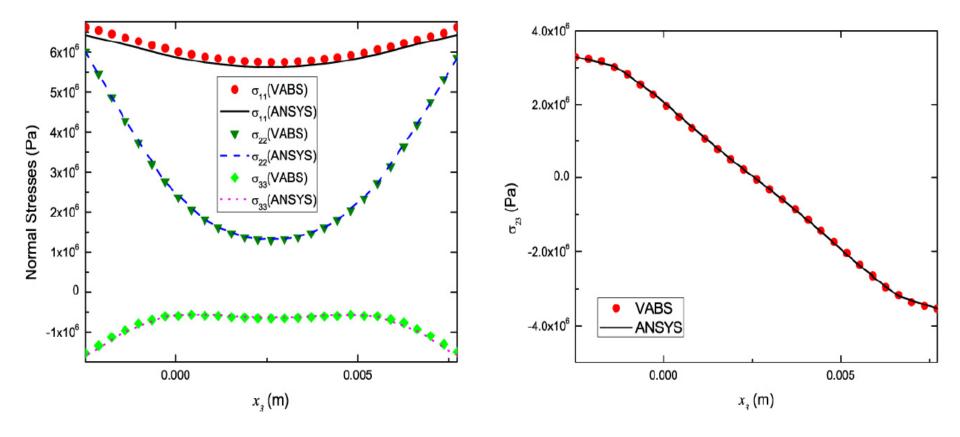

Realistic Rotor Blade



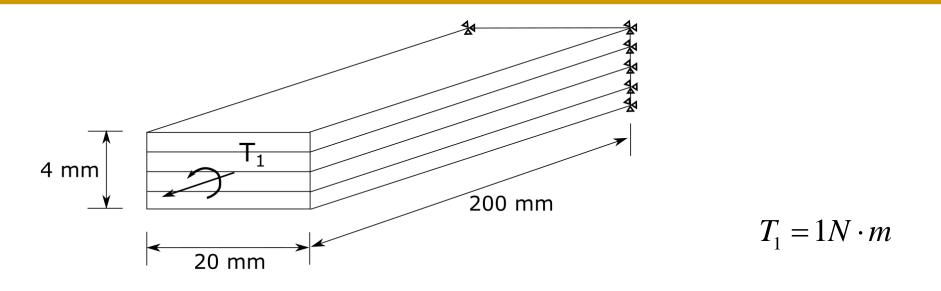
σ₁₁



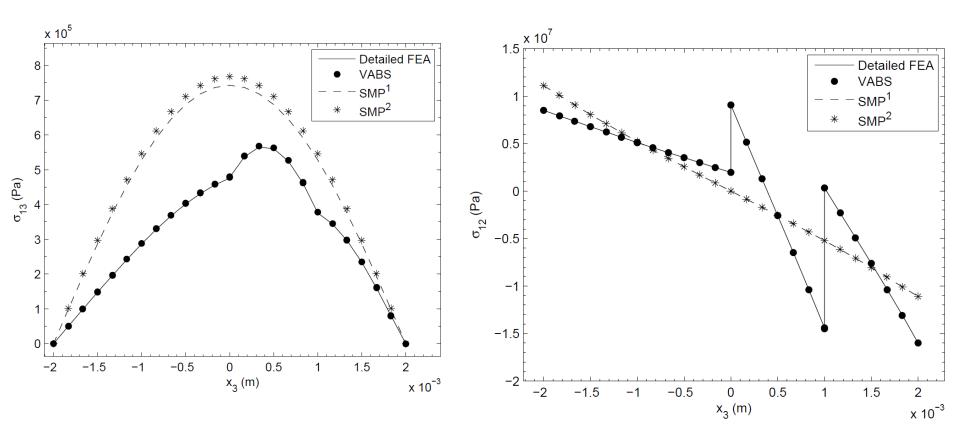

σ₂₃

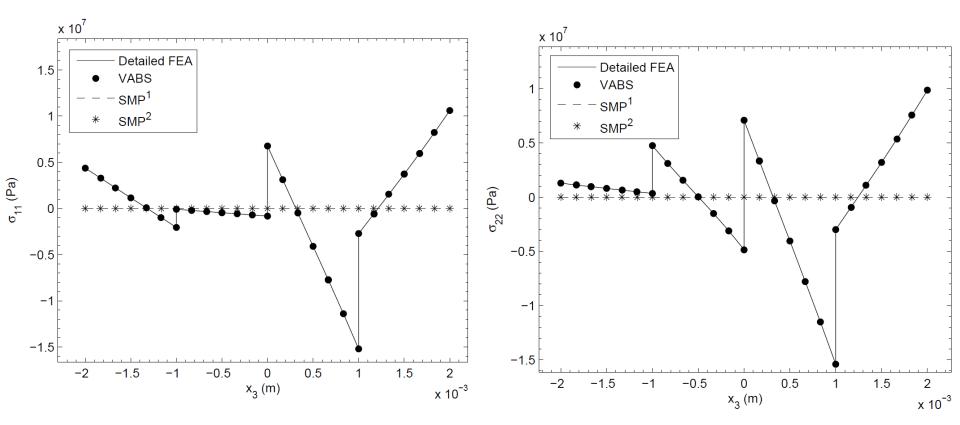


σ₃₃

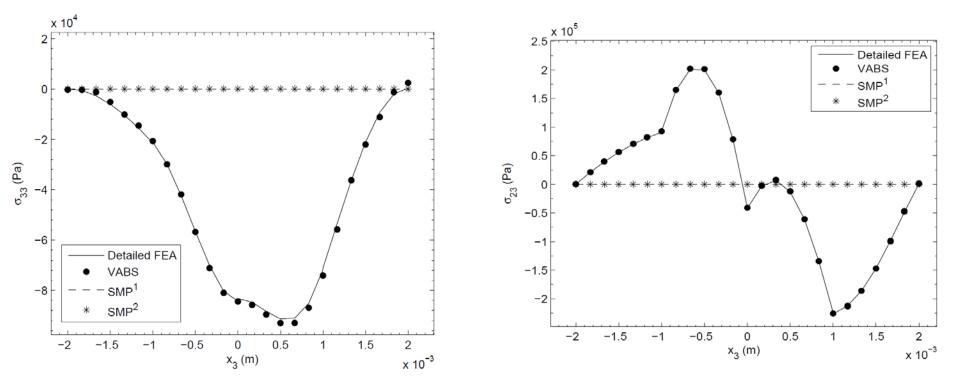


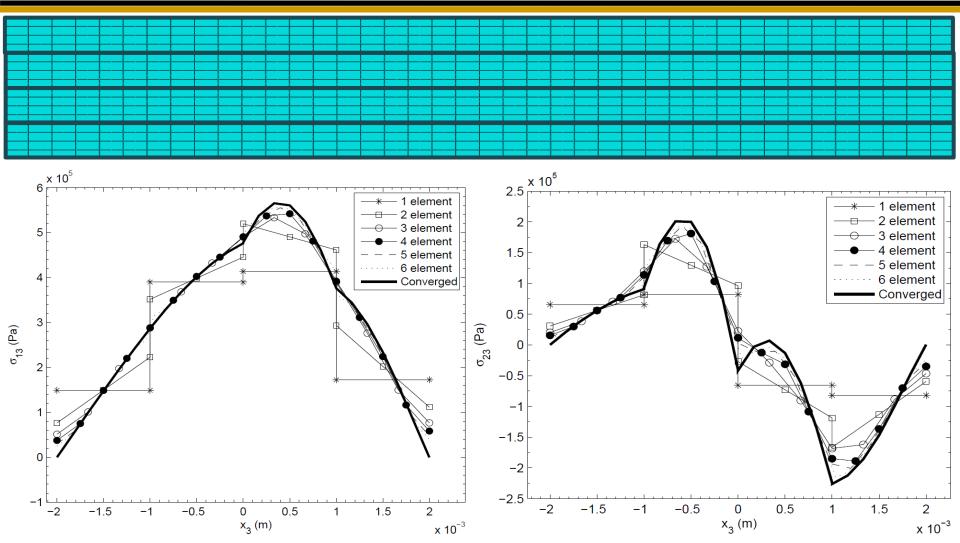
Realistic Rotor Blade


4-Layer Laminate Under Torque


Layup Sequence	E_{11} (GPa)	E_{22} (GPa)	E_{33} (GPa)	G_{12} (GPa)	G_{13} (GPa)	G_{23} (GPa)	ν_{12}	ν_{13}	ν_{23}
$[0/90/\pm 45]$	132	10.8	10.8	5.65	5.65	3.38	0.24	0.24	0.59

Liu, N. and Yu, W.: "Loss of Accuracy Using Smeared Properties in Composite Beam Modeling," *Proceedings of the American Society for Composites 30th Technical Conference*, East Lansing, Michigan, Sept. 28-30, 2015.


Loss of Accuracy Using Smeared Properties


Loss of Accuracy Using Smeared Properties

Loss of Accuracy Using Smeared Properties

Elements/Layer Needed for Direct Numerical Simulation

Converged: six 20-noded brick elements/layer thickness.

Conclusion

- VABS: an efficient high-fidelity alterative of DNS for slender composite structures.
 - Best complete set of beam properties: needed for static/dynamic analysis using beam elements.
 - Complete set of accurate 3D fields.
 - Highly optimized for efficiency: ply-level details of real blades can be modeled in seconds
 - Extensively validated in helicopter and wind industry
 - Directly integrated into other design environments
 - An essential piece for multiscale simulation of slender composite structures to link properties predicted by micromechanics to structural analysis.