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This paper presents a micromechanics model to characterize the effective stress relaxation
stiffness of polymer composites. The linear viscoelastic behavior of polymer material was
modeled by hereditary integral. The proposed model was established based on the
variational asymptotic method for unit cell homogenization (VAMUCH). All computations
with this model were accomplished in the time domain, hence the Laplace transform and
inversion commonly used for linear viscoelastic composites are not needed in this theory.
The accuracy and efficiency of the proposed model were verified by comparing with the
results and utilization of finite element models developed using ABAQUS.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Polymer matrix composites, which are composed of a variety of short or long fibers bound together by organic polymer
matrix, have been widely utilized in many engineering areas. Due to the viscoelastic behavior of the polymer matrix,
polymer matrix composites exhibit evidently viscoelastic behavior, in which the magnitude of stress and strain are time
and temperature dependent. The viscoelasticity phenomenon of polymer composites results from the long molecular chains
of the polymer matrix. The creep and stress relaxation responses of polymer composites seriously restrict the advanced
composites structures expected to operate for long period of time on many applications (Barbero, 1994).

Micromechanics models are the major tools to characterize the viscoelastic behavior of polymer composites (Aboudi,
2000; Hashin, 1983; Nemat-Nasser & Hori, 1993). Hashin (1965, 1970, 1970) was the first one developing the correspon-
dence principle, which showed that the effective relaxation and creep functions of viscoelastic heterogeneous media are
related to the effective elastic moduli of elastic heterogeneous media by the correspondence principle of the theory of linear
viscoelasticity. Park and Schapery (1999) developed an efficient and accurate numerical method of interconversion between
linear viscoelastic material functions based on a Prony series representation. Their method is straightforward and applicable
to interconversion between modulus and compliance functions in time, frequency, and Laplace transform domains. The most
common methodology for characterizing the viscoelastic behavior of polymer composites is to apply the Laplace transform
and Laplace inversion, where the correspondence principle was applied (Barbero & Luciano, 1995; Christensen, 1979;
Haasemann & Ulbricht, 2009; Megnis, Varna, Allen, & Holmberg, 2001; Li, Gao, & Roy, 2006; Schapery, 1967; Li et al.,
2006; Wang & Weng, 1992; Yancey & Pindera, 1990). Brinson and Lin (2003) and Fisher and Brinson (2003) employed
the finite element method to analyze the two-phase and three-phase viscoelastic composites in the Laplace transformed
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domain, respectively, and verified the results with the Mori–Tanaka model (Benveniste, 1987; Mori & Tanaka, 1973). Levin
and Sevostianov (2005) proposed an analytical approach for micromechanics modeling of the effective viscoelastic behavior
of composites in which the fraction-exponential operator was used to describe the viscoelastic properties of the constituents.
Recently, commercial finite element software ABAQUS was applied to predict the stress relaxation response (Abadi, 2009)
and creep response (Naik, Abolfathi, Karami, & Ziejewski, 2008) of fiber reinforced polymer matrix composites considering
a unit cell subjected to periodic boundary conditions.

The objective of this paper is to develop a micromechanics model to characterize the effective stress relaxation stiffness of
viscoelastic polymer composites. The proposed model is an extension of VAMUCH (variational asymptotic method for unit
cell homogenization) for effective elastic properties (Yu & Tang, 2007). The effective viscoelastic responses of polymer com-
posites were calculated in time domain. Hence the commonly used Laplace transform and inversion are not required in this
theory. Furthermore, the proposed model calculates simultaneously the complete set of effective stress relaxation stiffness
so that it is far more convenient than conventional finite element approaches with which multiple running are required on
multiple loading and boundary conditions. The accuracy and efficiency of the present modeling technique were validated
through the comparison with the results and utilization of finite element models developed based on ABAQUS.

2. Theoretical equations of stress relaxation stiffness of linear viscoelastic materials

Based on the Boltzmann superposition principle, the constitutive equations for the linear viscoelastic material can be
expressed in the time domain in the following way,
rijðtÞ ¼
Z t

�1
Cijkl t � sð Þ _eklðsÞds ð1Þ
where CijklðtÞ is the stress relaxation stiffness; _eklðsÞ is the strain rate; rijðtÞ is the stress tensor.
The stress relaxation tests are performed at constant strains, which means
eklðtÞ ¼
0 t < 0
ecst

kl t P 0

�
ð2Þ
where ‘‘cst’’ means constant values that do not vary with time but may change with position.
Eq. (2) implies: limt!�1eklðtÞ ¼ 0.
Then applying the integral by parts to Eq. (1), we can obtain
rijðtÞ ¼ Cijkl 0ð Þ þ
Z t

0

@Cijkl t � sð Þ
@ t � sð Þ ds

� �
ecst

kl ¼ CijklðtÞecst
kl ð3Þ
Eq. (3) implies that the instantaneous stress values are dependent on the instantaneous values of stress relaxation coef-
ficients instead of history effects when the linear viscoelastic materials are subjected to constant strain loading.

3. Micromechanics formulations for effective stress relaxation stiffness

Consider a multiphase viscoelastic composite that is an assembly of many periodic unit cells (UCs). The microstructure of
the multiphase composite is illustrated in Fig. 1. Two coordinate systems including x ¼ ðx1; x2; x3Þ and y ¼ ðy1; y2; y3Þ are
employed to facilitate the micromechanics formulations. We use xi as the global coordinates to describe the macroscopic
structure and yi parallel to xi as the local coordinates to describe the UC (Here and throughout the paper, Latin indices
assume 1–3 and repeated indices are summed over their range except where explicitly indicated). We choose the origin
of the local coordinate system yi to be the geometric center of UC.

3.1. Effective stress relaxation stiffness of linear viscoelastic composites

The Eq. (3) may be derived from the following transient potential energy density functional,
UðtÞ ¼ 1
2

CijklðtÞecst
ij ecst

kl ð4Þ
such that
rijðtÞ ¼
@UðtÞ
@ecst

ij

ð5Þ
The effective stress relaxation stiffness of the linear viscoelastic composites can be defined in the following ways,
�rijðtÞ ¼ C�ijklðtÞ�ecst
kl ð6Þ



Fig. 1. A sketch of periodic heterogeneous materials (only two-dimensional (2D) unit cell (UC) is drawn for clarity).
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2

CijklðtÞeijðtÞeklðtÞdX ¼ 1
2

C�ijklðtÞ�ecst
ij

�ecst
kl ð7Þ
where ‘‘over-bar’’ indicates variables which are used in the macroscopic analysis of homogenized materials and X is the vol-
ume of unit cell, such that
�ecst
ij ¼

1
X

Z
X
eijðtÞdX ð8Þ

�rijðtÞ ¼
1
X

Z
X
rijðtÞdX ð9Þ
Although the externally applied mechanical strain to the viscoelastic composites are kept constant as �ecst
ij , the local strain

eijðtÞ and local stress rijðtÞ within unit cell vary with time due to the stress relaxation of linear viscoelastic polymer.
Superscripts ‘‘⁄’’ in Eqs. (6), (7) denote the effective properties whose calculations are determined by the micromechanics
model one employs.

3.2. VAMUCH model

The proposed model for effective stress relaxation stiffness of linear viscoelastic composites is an extension of the
variational asymptotic method for unit cell homogenization (VAMUCH) for elastic composites (Yu & Tang, 2007).
Following a similar derivation procedure as in Yu and Tang (2007), we can obtain a variational statement which govern
the micromechanics model. The final theory of VAMUCH for homogenizing linear viscoelastic heterogeneous materials sub-
jected to constant strains can be obtained by minimizing
PX ¼
1

2X

Z
X

CijklðtÞ �ecst
ij þ v ijjð Þ

h i
�ecst

kl þ v kjlð Þ

h i
dX ð10Þ
subjected to periodic constraints vþj
i ¼ v�j

i for i; j ¼ 1;2;3 with vþj
i ¼ vijyj¼dj=2 and v�j

i ¼ vijyj¼�dj=2. Here, vi is the commonly

called fluctuating function and dj is the size of the unit cell, �ecst
ij is the global constant strains.

We introduced the following matrix notations:
�� ¼ b�ecst
11 2�ecst

12
�ecst

22 2�ecst
13 2�ecst

23
�ecst

33c
T ð11aÞ

�1 ¼ bê11ðtÞ 2ê12ðtÞ ê22ðtÞ 2ê13ðtÞ 2ê23ðtÞ ê33ðtÞcT ð11bÞ
where
�ecst
ij ¼

1
2
@v i xð Þ
@xj

þ @v j xð Þ
@xi

� �
ð12aÞ
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êijðtÞ ¼ v ijjð Þ ¼
1
2

@vi t; x; yð Þ
@yj

þ
@vj t; x; yð Þ

@yi

" #
ð12bÞ
where v i xð Þ ¼ 1
X

R
X ui t; x; yð Þ½ �dX with ui t; x; yð Þ being the local displacement vectors that is expressed as: ui t; x; yð Þ ¼

v i xð Þ þ yj
@v i
@xj
þ vi t; x; yð Þ.

Then the matrix �1 in Eq. (11b) can also be written as
�1 ¼

@
@y1

0 0
@
@y2

@
@y1

0

0 @
@y2

0
@
@y3

0 @
@y1

0 @
@y2

@
@y3

0 0 @
@y3

2
666666666664

3
777777777775

v1

v2

v3

8><
>:

9>=
>; � Chv ð13Þ
where Ch is an operator matrix and v is a column matrix containing the three components of the fluctuation functions. If we
discretize v using finite elements as
v xi; yið Þ ¼ S yið Þv xið Þ ð14Þ
where S representing the shape functions (in assemble sense excluding the constrained node and slave nodes) and v column
matrix of the nodal value of the fluctuation functions for all active nodes. Substituting Eqs. (11)–(14) into Eq. (10), we obtain
a discretized version of the functional as
PX ¼
1

2X
vT Evþ 2vT Dhe��þ ��T Dee��
� �

ð15Þ
where
E ¼
Z

X
ChSð ÞT D ChSð ÞdX Dhe ¼

Z
X

ChSð ÞT DdX Dee ¼
Z

X
DdX ð16Þ
with D as the 6� 6 material matrix condensed from the fourth-order stress relaxation stiffness tensor CijklðtÞ. Note that the
stress relaxation stiffness tensor of linear elastic materials is equal to the elastic stiffness tensor Ce

ijkl, which is time-
independent. Minimizing PX in Eq. (15), we obtain the following linear system:
Ev ¼ �Dhe�� ð17Þ
The fluctuation function v is linearly proportional to �e, which means the solution can be written as
v ¼ v0
�� ð18Þ
Substituting Eq. (18) into Eq. (15), we can calculate the free energy density of the UC as
PX ¼
1

2X
��T vT

0Dhe þ Dee
� �

�� ¼ 1
2

��T D��� ð19Þ
Clearly D� is a 6� 6 effective material matrix containing the effective stress relaxation stiffness coefficients.

4. Model verifications

In this section, the VAMUCH model was used to predict the effective stress relaxation stiffness C�ijklðtÞ of glass fiber rein-
forced polymer matrix composites. The glass fibers are of circular shape and in square array. In order to verify the accuracy
and efficiency of the VAMUCH model, the finite element unit cell models for effective stress relaxation stiffness were also
developed based on ABAQUS.

4.1. Material properties of constituents

Glass fiber The glass fibers are isotropic and linear elastic materials. The material properties of the glass fiber are shown
in Table 1.

Polymer The elastic relaxation modulus of the isotropic and linear viscoelastic polymer materials can be expressed using
Prony series as
EðtÞ ¼ E0 1�
Xn

k¼1

gk 1� e�t=sk
� � !

ð20Þ



Table 1
Elastic properties of glass fibers (Megnis et al., 2001).

Young’s modulus E (MPa) Poisson’s ratio m

Glass fiber 80,000 0.3
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where E0 is the instantaneous Young’s modulus; gk is dimensionless modulus and sk is the time relaxation material para-
meter. For simplicity, we considered a special case, namely, n ¼ 1; g1 ¼ 0:5, and s1 ¼ 30, such that Eq. (20) is reduced to
EðtÞ ¼ 0:5E0 1þ e�t=s1
� �

ð21Þ
where E0 ¼ 8000 MPa. The Poisson’s ratio of the polymer is assumed to be constant v = 0.4.

4.2. ABAQUS finite element unit cell models

The effective properties of fiber reinforced composites with the fibers being in square array possess square symmetry.
Their effective stress relaxation stiffness matrix can be expressed as
�r11ðtÞ
�r22ðtÞ
�r33ðtÞ
�r23ðtÞ
�r12ðtÞ
r13ðtÞ

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;
¼

C�11ðtÞ C�12ðtÞ C�12ðtÞ 0 0 0

C�12ðtÞ C�22ðtÞ C�23 0 0 0

C�12ðtÞ C�23ðtÞ C�22 0 0 0

0 0 0 C�44ðtÞ 0 0

0 0 0 0 C�55ðtÞ 0

0 0 0 0 0 C�55ðtÞ

2
66666666664

3
77777777775

�ecst
11

�ecst
22

�ecst
33

�ccst
23

�ccst
12

�ccst
13

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

ð22Þ
In this study, the boundary conditions of the finite element unit cell model are applied according to Sun and Vaidya
(1995).

4.2.1. Calculation of C�11ðtÞ and C�12ðtÞ
Since only normal loadings are needed and there are two axes of symmetry, only a quadrant of the original unit cell model

as shown in Fig. 2 was used to calculate C�11ðtÞ and C�12ðtÞ. The displacement constraints applied to the finite element models
for calculating C�11ðtÞ and C�12ðtÞ are as follows:
Fig. 2. Quadrant unit cell model used for the calculations of C�11ðtÞ; C�12ðtÞ; C�22ðtÞ and C�23ðtÞ.
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u1 0;2;3ð Þ ¼ 0
u1 a;2;3ð Þ ¼ constant ¼ d

u2 1;0;3ð Þ ¼ 0
u2 1; b;3ð Þ ¼ 0
u3 1;2;0ð Þ ¼ 0
u3 1;2; cð Þ ¼ 0

ð23Þ
where u1, u2, and u3 represent the displacements in the 1-, 2- and 3-directions, respectively. The C�11ðtÞ and C�12ðtÞ are com-
puted as
C�11ðtÞ ¼
�r11ðtÞ
�ecst

11
C�12ðtÞ ¼

�r22ðtÞ
�ecst

11
ð24Þ
where �ecst
11 ¼ d=a; �r11ðtÞ and �r22ðtÞ are generated due to the boundary conditions in Eq. (23).

4.2.2. Calculation of C�22ðtÞ and C�23ðtÞ
The quadrant unit cell model shown in Fig. 2 was also used for the calculations of C�22ðtÞ and C�23ðtÞ. The displacement con-

straints applied to the finite element models for calculating C�22ðtÞ and C�23ðtÞ are as follows:
u1ð0;2;3Þ ¼ 0
u1ða;2;3Þ ¼ 0
u2ð1;0;3Þ ¼ 0
u2ð1; b;3Þ ¼ constant ¼ d

u3ð1;2;0Þ ¼ 0
u3ð1;2; cÞ ¼ 0

ð25Þ
The C�22ðtÞ and C�23ðtÞ are computed as
C�22ðtÞ ¼
�r22ðtÞ
�ecst

22
C�23ðtÞ ¼

�r33ðtÞ
�ecst

22
ð26Þ
where �ecst
22 ¼ d=b; �r22ðtÞ and �r33ðtÞ are generated due to the boundary conditions in Eq. (25).

4.2.3. Calculation of C�44ðtÞ
A two dimensional plane strain model as shown in Fig. 3 was employed to compute the transverse stress relaxation mod-

ulus C�44ðtÞ. The required displacement constraints are as follows
u2 �b;3ð Þ ¼ u2 b;3ð Þ
u3 �b;3ð Þ ¼ u3 b;3ð Þ
u2 2;�cð Þ ¼ u2 2; cð Þ
u3 2;�cð Þ ¼ u3 2; cð Þ

ð27Þ
Fig. 3. Two dimensional model used to calculate the transverse stress relaxation modulus C�44ðtÞ.
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The further constraints are
e33 �b;3ð Þ ¼ 0 e22 2;�cð Þ ¼ 0 ð28Þ
The bottom corners are placed on rollers to eliminate rigid body displacement. A constant horizontal displacement d is
applied to each corner of the unit cell. The C�44ðtÞ is obtained as
C�44ðtÞ ¼
�r23ðtÞ
�ccst

23
ð29Þ
where the constant global transverse shear strain �ccst
23 ¼ d=c.

4.2.4. Calculation of C�55ðtÞ
The calculation of average longitudinal stress relaxation modulus C�55ðtÞ is performed on a 3D full unit cell model as

shown in Fig. 4. The required displacement constraints are as follows
u1ð0;2;3Þ ¼ u1ða;2;3Þ
u2ð0;2;3Þ ¼ u2ða;2;3Þ
u3ð0;2;3Þ ¼ u3ða;2;3Þ
u1ð1;2;0Þ ¼ u2ð1;2;0Þ ¼ u3ð1;2;0Þ ¼ 0
u1ð1;2;2cÞ ¼ constant ¼ d

u3ð1;2;2cÞ ¼ 0

ð30Þ
The C�55ðtÞ is calculated as
C�55ðtÞ ¼
�r12ðtÞ
�ccst

12
ð31Þ
where the constant global transverse shear strain �ccst
12 ¼ d=2c.

In all finite element simulations, the constant strains were instantaneously applied at t ¼ 0 and then kept constant until
the end of simulations as described by Eq. (2).

4.3. Predictions of effective stress relaxation stiffness

The effective stress relaxation coefficients predicted by the VAMUCH model and ABAQUS finite element models are plot-
ted in Figs. 5–10. It is obviously observed that the VAMUCH predictions are almost identical to ABAQUS results. The accuracy
Fig. 4. Full finite element unit cell model used for the calculation of effective longitudinal stress relaxation modulus C�55ðtÞ.



Fig. 5. Variation of effective stress relaxation coefficient C�11ðtÞ with respect to time for different volume fraction of the fibers.

Fig. 6. Variation of effective stress relaxation coefficient C�22ðtÞ with respect to time for different volume fraction of the fibers.

Fig. 7. Variation of effective stress relaxation coefficient C�12ðtÞ with respect to time for different volume fraction of the fibers.
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Fig. 8. Variation of effective stress relaxation coefficient C�23ðtÞ with respect to time for different volume fraction of the fibers.

Fig. 9. Variation of effective stress relaxation coefficient C�44ðtÞ with respect to time for different volume fraction of the fibers.

Fig. 10. Variation of effective stress relaxation coefficient C�55ðtÞ with respect to time for different volume fraction of the fibers.
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of the VAMUCH model has been validated by ABAQUS finite element models. VAMUCH can obtain the complete set of effec-
tive instantaneous coefficients within one step of analysis while the predictions obtained by ABAQUS require multiple run-
ning on multiple loading and boundary conditions. When calculating the effective properties of fiber reinforced composites,
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VAMUCH only need the mesh information (such as the number of nodes and elements, and the coordinate of nodes) of a 2D
model as shown in Fig. 3 but different model geometries as shown in Figs. 2–4 are needed when using ABAQUS finite
element modeling technique. Hence, VAMUCH is more efficient than ABAQUS finite element models.

5. Conclusions

A micromechanics model has been developed to calculate the effective stress relaxation stiffness of linear viscoelastic
composites. This model possesses the advantages of geometrical flexibility and can obtain the complete of effective coeffi-
cients within one step of analysis. Hence, it can be applied to polymer composites having any shapes of reinforcements
although a fiber reinforced composites was used as a numerical example in this work. The predictions of effective stress
relaxation stiffness are obtained in the time domain without applying the traditionally used Laplace transform and inversion
and correspondence principle.
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