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In the present work, a micromechanics model was established to predict the effective
time-dependent pseudoelastic responses of composites consisting of thermoviscoelastic
polymer matrix and shape memory alloy (SMA) reinforcement. The incremental constitu-
tive equations were firstly derived for polymer and SMA, respectively, and then formulated
into a unified formulation. The starting point of the proposed model is to construct a vari-
ational statement which is a potential energy functional derived from the unified formula-
tion. On account of the nonlinearity of the composites’ behavior, the present model was
developed based on an incremental procedure associated with the instantaneous effective
tangential matrix of composites’ coefficients. The present model offers an efficient tool for
analyzing the SMA polymer matrix composites with arbitrary number and geometry of
SMA reinforcement.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Shape memory alloys (SMAs) are metallic alloys that are capable of recovering their original shape through the applica-
tion of temperature or stress fields due to the phase transformation between austenitic and martensitic phases that SMAs
undergo. Two main phenomena related to SMAs are: (i) The first one is pseudoelasticity (PE) in which very large nonlinear
elastic strain can be generated especially upon loading, but full recovery is achieved in a hysteresis loop upon unloading; (ii)
the second one is called shape memory effect (SME), which may be one-way or two-way. Due to these unique properties,
SMAs are excellent candidates for sensors, large strain actuators, and other smart structures widely used in various areas
of engineering fields such as aerospace, automotive, and biomechanical applications (Jani, Leary, Subic, & Gibson, 2014).
During the past several decades, various numerical models have been developed in order to accurately describe the main
behaviors of these alloys (Birman, 1997; Paiva & Savi, 2006). Generally speaking, these models are categorized into micro
models (Warlimont, Delaey, Krishnan, & Tas, 1974; Nishiyama, 1978; Achenbach & Müller, 1982; Perkins, 1975) and macro
phenomenological models (Paiva, Savi, Braga, & Pacheco, 2005; Brinson & Lammering, 1993; Brinson, 1993; Panico &
Brinson, 2007; Lagoudas, BO, & Qidwai, 1996; Lagoudas, 2008).

SMA composites fabricated by embedding SMA fibers, particles, wires, or thin plates into metal matrix or polymer matrix
have attracted great interest in the applications of a wide variety of smart materials and structures. Micromechanics models
are indispensable tools to analyze the thermo-mechanical behavior of the SMA composite materials and structures. Boyd and
Lagoudas (1994) employed Mori–Tanaka micromechanics model to predict the effective properties of polymer matrix
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composites with embedded SMA fibers, in which the polymer matrix was modeled as elastic materials. There are many other
research works developed to understand the thermo-mechanical behavior of SMA composites with elastic matrix. For exam-
ple, Damanpack, Aghdam, and Shakeri (2015) recently presented a finite element RVE (representative volume element)
model to investigate the off-axis thermo-mechanical response of composites consisting of SMA and elastic polymeric matrix,
in which the thermo-mechanical behavior of SMA was described using the constitutive model developed by Panico and
Brinson (2007). Birman, Saravanos, and Hopkins (1996) and Saravanos, Birman, and Hopkins (1995) presented a combined
micromechanics approach for the calculation of equivalent properties of the composite system consisting of SMA fibers
within an elastic matrix in uniform thermal fields under longitudinal loads. They derived analytical solutions through the
extension of Chamis’s multi-cell micro-mechanics approach (Chamis, 1983) to predict the response of SMA composites with
the assumption that the rate of transformation strain tensor is proportional to the rate of the martensite volumetric fraction.
Gilat and Aboudi (2004) employed generalized method of cells (Aboudi, 1996) to analyze unidirectional composites with
SMA fibers embedded in polymeric or metallic matrices subjected to thermal loadings. They adopted the 3D constitutive
model of Lagoudas et al. (1996) to simulate the behavior of SMA. Furthermore, the polymeric matrix was assumed to be
a linearly elastic material while the metallic matrix was modeled using the unified viscoplasticity theory of Bodner
(2002). Based on the framework of HFGMC (Aboudi, 2004), Freed and Aboudi (2009) developed a micromechanics model
to determine the effective mechanical properties and the two-way shape memory effect of SMA composites with SMA phase
embedded in elastic resin matrix or elasto-viscoplastic matrix. Jarali, Raja, and Upadhya (2008) proposed an analytical
micromechanical approach to evaluate the behavior of SMA composites consisting of SMA and elastic polymeric matrix
under hygrothermal environment using the equivalent inclusion method proposed by Mura (1982).

The existing literatures show that numerous researchers have worked extensively to model the thermo-mechanical
behavior of SMA composites with SMA reinforcements embedded in polymer or resin matrix. However, most of the research
works considered the polymer or resin matrix as elastic materials. It is known that polymer or resin materials exhibit strong
time-dependent viscoelastic behavior, which in turn causes the macroscopic viscoelastic response of SMA composites.
Hence, it is absolutely needed that micromechanics models dealing with the time-dependent viscoelastic behavior of
SMA composites with polymer or resin matrix are established for such purpose. In this study, based on the micromechanics
framework VAMUCH (Yu & Tang, 2007), a micromechanics model was proposed to determine the time-dependent and non-
linear pseudoelastic behavior of SMA composites composed of SMA reinforcements and viscoelastic polymer matrix under
thermo-mechanical loadings. The behavior of SMA phase was predicted using a 3D model extended from Brinson’s
one-dimensional model (Brinson & Lammering, 1993; Brinson, 1993), while the linear thermoviscoelastic behavior of the
matrix was modeled by hereditary integral constitutive equation derived on the basis of Boltzmann superposition principle
(Wineman & Rajagopal, 2000). Numerical examples were used to demonstrate the capability of the proposed model.

2. Incremental constitutive equations of materials

2.1. Incremental constitutive equations for linear thermo-viscoelastic polymer

Considering the linear thermo-viscoelastic polymer having no history of stress and deformation before time t ¼ 0, then
based on the Boltzmann superposition principle, the constitutive equations for the linear thermo-viscoelastic polymer can
be expressed in the time domain in the following way,
rijðtÞ ¼
Z t

0
Cijklðt � sÞ _eðsÞ þ bijðt � sÞ _hðsÞ
h i

ds ð1Þ
where CijklðtÞ is the stress relaxation stiffness tensor; _eklðsÞ is the strain rate; _hðsÞ is the temperature change rate; rijðtÞ is the
instantaneous stress tensor; bijðtÞ is the instantaneous thermal stress tensor. Note that bijðtÞ ¼ �CijklðtÞakl with akl being ther-
mal expansion coefficients. In this study, the akl of the polymer are assumed to be constant.

According to the time–temperature superposition principle (Wineman & Rajagopal, 2000), the real time t have to be
replaced with reduced time n in order to account for the variation of material’s properties of polymer with temperature.
Hence, the Eq. (1) can be rewritten as
rijðtÞ ¼
Z t

0
Cijklðn� n0Þ _eklðn0Þ þ bijðn� n0Þ _hðn0Þ
h i

dn0 ð2Þ
The reduced time n ¼ nðtÞ is defined by
nðtÞ ¼
Z t

0

dt0

aT
ð3Þ
where aT is a time-scale shift factor, and n0 ¼ nðsÞ.
As pointed out by Pyatigorets, Marasteanu, Khazanovich, and Stolarski (2010), since the corresponding value of real time t

can be found for each value of reduced time n and vice versa, the stress and strain in the reduced time domain can be
replaced with their values found for the corresponding real time, such that
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rijðnÞ � rijðnðtÞÞ � rijðtÞ; eijðnÞ � eijðnðtÞÞ � eijðtÞ ð4Þ
Hence, the Eq. (2) can be simplified as
rijðtÞ ¼
Z t

0
Cijkl nðtÞ � nðsÞð Þ _eklðsÞ þ bij nðtÞ � nðsÞð Þ _hðsÞ
h i

ds ð5Þ
In light of the nonlinear, time dependent, and multiphysics response of the composites, our analysis need to be incremen-
tal. The incremental formulations of Eq. (5) can be expressed as
DrijðtÞ ¼ rijðt þ DtÞ � rijðtÞ

¼
Z tþDt

t
Cijklðnðt þ DtÞ � nðsÞÞ _eklðsÞ þ bijðnðt þ DtÞ � nðsÞÞ _hðsÞ
h i

ds

þ
Z t

0
Cijklðnðt þ tÞ � nðsÞÞ _eklðsÞ þ bijðnðt þ tÞ � nðsÞÞ _hðsÞ
h i

ds

�
Z t

0
CijklðnðtÞ � nðsÞÞ _eklðsÞ þ bijðnðtÞ � nðsÞÞ _hðsÞ
h i

ds ð6Þ
Although the strain rate and temperature change rate are not necessarily constant in the whole time domain, it is reason-
able to assume that the strain rate and temperature change rate are kept constant during each time increment Dt.
Furthermore, the temperature change rate are assumed to be uniform in the whole composites. Then, the Eq. (6) can be
rephrased as
DrijðtÞ ¼ LijklðtÞDeklðtÞ þ cijðtÞDhðtÞ þxijðtÞ ð7Þ
where
LijklðtÞ ¼
1
Dt

Z tþDt

t
Cijkl n t þ Dtð Þ � nðsÞ½ �ds

cijðtÞ ¼
1
Dt

Z tþDt

t
bij n t þ Dtð Þ � nðsÞ½ �ds

� �
xijðtÞ ¼

Z t

0
Cijkl n t þ Dtð Þ � nðsÞð Þ � Cijkl nðtÞ � nðsÞð Þ
� �

_eklðsÞdsþ
Z t

0
bij n t þ Dtð Þ � nðsÞð Þ � bij nðtÞ � nðsÞð Þ
� �

_hðsÞds
2.2. Incremental constitutive equations for shape memory alloys

Based on the one dimensional model of Brinson (Brinson & Lammering, 1993; Brinson, 1993), the three dimensional
incremental thermo-mechanical constitutive equations of SMA might be expressed as
Drij ¼ BijklðWÞDekl þ bijðWÞDhþKijðWÞDW ð8Þ
where W is an internal state variable representing the volume fraction of martensite. The elastic stiffness tensor of SMA,
BijklðWÞ, is a function of the martensite fraction where the elastic moduli of SMA, EðWÞ, is given by EðWÞ ¼ EA þW EM � EAð Þ
with EM and EA being the elastic moduli of pure martensite and austenite, respectively. bijðWÞ is the thermal stress tensor
of the SMA and given by bijðWÞ ¼ �BijklðWÞaklðWÞ with aklðWÞ being the thermal expansion coefficients of SMA, where
aklðWÞ is given by a linear combination such that aklðWÞ ¼ aA

kl þW aM
kl � aA

kl

� �
, where aA

kl and aM
kl are thermal expansion coef-

ficients of pure austenite and martensite, respectively. The relationship between the transformation function KijðWÞ and
elastic stiffness tensor of SMA is given by
KijðWÞ ¼ �BijklðWÞ eLdkl
� �

ð9Þ
where dkl is Kronecker delta; eL is the maximum residual strain, which is assumed to be a constant material function.
The martensitic volume fraction W is the summation of two distinct martensitic fractions in such a way that W ¼ Ws þWT

with Ws being the stress-induced martensite fraction, and WT being the temperature-induced martensite fraction.
The martensitic transformation evolution can be expressed by

(i) For T > Ms and rCrit
s þ CM T �Msð Þ < re < rCrit

f þ CM T �Msð Þ
Ws ¼
1�Ws0

2
cos

p
rCrit

s � rCrit
f

re � rCrit
f � CM T �Msð Þ

h i( )
þ 1þWs0

2
ð10aÞ

WT ¼ WT0 �
WT0

1�Ws0
Ws �Ws0ð Þ ð10bÞ
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(ii) For T < Ms and rCrit
s < re < rCrit

f

Ws ¼
1�Ws0

2
cos

p
rCrit

s � rCrit
f

re � rCrit
f

� 	" #
þ 1þWs0

2
ð11aÞ

WT ¼ WT0 �
WT0

1�Ws0
Ws �Ws0ð Þ þ Du ð11bÞ

where
Du ¼
1�Ws0

2 cos aM T �Mf

� �� �
þ 1


 �
if Mf < T < Ms; T < T0

0 else

(
ð12Þ
The reverse transformation to austenite holds for CA T � Af

� �
< re < CA T � Asð Þ and T > As, and is expressed as
Ws ¼
Ws0

2
cos aA T � As �

re

CA

� �� 

þ 1

� �
ð13aÞ

WT ¼
WT0

2
cos aA T � As �

re

CA

� �� 

þ 1

� �
ð13bÞ
where the parameters aM and aA are defined as
aM ¼
p

Ms �Mf
aA ¼

p
Af � As

ð14Þ
Other parameters in Eqs. (10–13) include the four important temperature parameters: martensite finish temperature, Mf ,
martensite start temperature, Ms, austenite start temperature, As, and austenite finish temperature, Af . The constants CM

and CA are material properties represent the relationship between the temperature and critical transformation stress. rCrit
s

and rCrit
f are critical transformation stress at both start and finish of transformation, respectively. re is von Mises stress.

Ws0 and WT0 are the volume fractions of the stress induced and temperature induced martensite immediately before the
transformation starts, respectively.

Finally, the increment of martensitic volume fraction can be obtained as
DW ¼ @W
@T

DT þ @W
@re

Dre ð15Þ
3. Micromechanics model

Consider the smart composites with periodic microstructure as shown in Fig. 1. Two coordinate systems x ¼ x1; x2; x3ð Þ
and y ¼ y1; y2; y3ð Þ are adopted to facilitate the micromechanics formulations. We use xi as the global coordinates to describe
the macroscopic structure and yi parallel to xi as the local coordinates to describe the unit cell (UC) (Here and throughout the
Fig. 1. A sketch of periodic heterogeneous materials (only two-dimensional (2D) UC is drawn for clarity).
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paper, Latin indices assume 1, 2, and 3 and repeated indices are summed over their range except where explicitly indicated).
We choose the origin of the local coordinate system yi to be the geometric center of the UC.

3.1. Unified incremental constitutive equations for composite and its constituents

The unified incremental formulations of the locally nonlinear and time-dependent mechanical responses of the con-
stituents of the composites consisting of SMA and polymer matrix might be expressed as
Drij t;Wð Þ ¼ Mijkl t;Wð ÞDeklðtÞ þ gij t;Wð ÞDhðtÞ þ-ij t;Wð Þ ð16Þ
where
Mijklðt;WÞ ¼
LijklðtÞ for polymer materials
BijklðWÞ for SMA

�

gijðt;WÞ ¼
cijðtÞ for polymer materials
bijðWÞ for SMA

(

-ijðt;WÞ ¼
xijðtÞ for polymer materials
KijðWÞDW for SMA

�

Eq. (16) can be derived by
DrijðtÞ ¼
@ DUðt;WÞ½ �
@ DeijðtÞ
� � ð17Þ
where the instantaneous energy increment DUðt;WÞ is given by
DU t;Wð Þ ¼ 1
2

Mijklðt;WÞDeijðtÞDeklðtÞ þ gijðt;WÞDeijðtÞDhðtÞ þ-ijðt;WÞDeijðtÞ þ
1
2

GDhðtÞ þ 1
2

cv
DhðtÞ2

T0
þ 1

2
hv ð18Þ
where G is the energy change per unit temperature; cv is the specific heat per unit volume at constant volume; T0 is the ref-
erence temperature at which the constituent material is stress free; hv , which is the energy change similar to cv , represents
the ratio of the energy added or removed from materials to the resulting martensite’s volume fraction change.

The effective instantaneous properties of the SMA composite materials can be defined in the following two ways
D�rij t;Wð Þ ¼ M�
ijkl t;Wð ÞD�eklðtÞ þ g�ij t;Wð ÞDhðtÞ þ-�ij t;Wð Þ ð19Þ

1
X

Z
X

1
2

Mijkl t;Wð ÞDeijðtÞDeklðtÞ þ gij t;Wð ÞDeijðtÞDhðtÞ þ-ij t;Wð ÞDeijðtÞ þ
1
2

GDhðtÞ þ 1
2

cv
DhðtÞ2

T0
þ 1

2
hv

" #

dX ¼ 1
2

M�
ijkl t;Wð ÞD�eijðtÞD�eklðtÞ þ g�ij t;Wð ÞD�eijðtÞDhðtÞ þ-�ij t;Wð ÞD�eijðtÞ þ

1
2

G�DhðtÞ þ 1
2

c�v
DhðtÞ2

T0
þ 1

2
h�v ð20Þ
where D�eij are the increments of the global strain tensor; Superscripts ‘‘⁄’’ denote the effective properties whose calculations
are determined by the micromechanics model; X is the volume of unit cell.

3.2. VAMUCH model

Starting from free energy in Eq. (18) and following the identical derivation procedure described in (Yu & Tang, 2007; Tang
& Felicelli, 2015), we can finally formulate the variational statement, which govern the micromechanics model, as minimiz-
ing the following functional
PX ¼
1
X

Z
X

1
2

Mijkl t;Wð Þ D�eij þ v ijjð Þ

h i
�ekl þ v kjlð Þ

h i
þ gij t;Wð Þ �eij þ v ijjð Þ

h i
DhðtÞ þ-ij t;Wð Þ �eij þ v ijjð Þ

h i�
þ 1

2
GDhðtÞ þ 1

2
cv

DhðtÞ2

T0
þ 1

2
hv

)
dX ð21Þ
under the following periodic constraints
vþj
i ¼ v�j

i for i; j ¼ 1; 2; 3 ð22Þ
with vþj
i ¼ vijyj¼dj=2 and v�j

i ¼ vijyj¼�dj=2. Here, vi is the commonly called fluctuating function and dj is the size of unit cell.

Since DeijðtÞ ¼ D�eij þ v ijjð Þ, we introduced the following matrix notations:
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D��ðtÞ ¼ D�e11ðtÞ 2D�e12ðtÞD�e22ðtÞ 2D�e13ðtÞ 2D�e23ðtÞ D�e33ðtÞb cT ð23aÞ

D�1 ¼ Dê11ðtÞ 2Dê12ðtÞ Dê22ðtÞ 2Dê13ðtÞ 2Dê23ðtÞ Dê33ðtÞb cT ð23bÞ
where
D�eijðtÞ ¼
1
2
@Dv i t; xð Þ

@xj
þ @Dv j t; xð Þ

@xi

� 

ð24aÞ

DêijðtÞ ¼ v ijjð Þ ¼
1
2

@vi t; x; yð Þ
@yj

þ
@vj t; x; yð Þ

@yi

" #
ð24bÞ
where Dv i t; xð Þ ¼ 1
X

R
X Dui t; x; yð Þ½ � dX with Dui t; x; yð Þ being the local increments of displacement vectors that is expressed as:

Dui t; x; yð Þ ¼ Dv i t; xð Þ þ yj
@Dv i
@xj
þ vi t; x; yð Þ.

The matrix form of D�1 in Eq. (23b) is given by
D�1 ¼

@
@y1

0 0

@
@y2

@
@y1

0

0 @
@y2

0

@
@y3

0 @
@y1

0 @
@y2

@
@y3

0 0 @
@y3

2666666666666664

3777777777777775

v1

v2

v3

8>><>>:
9>>=>>; � Chv ð25Þ
where Ch is an operator matrix and v is a column matrix containing the three components of the fluctuation functions. We
discretize v using finite elements as
v xi; yið Þ ¼ S yið ÞX xið Þ ð26Þ
where S represents the shape function (in assemble sense excluding the constrained node and slave nodes) and X is the col-
umn matrix of the nodal value of the fluctuation functions for all active nodes. Substituting Eqs. (23–26) into Eq. (21), we
obtain a discretized version of the functional as
PX ¼
1

2X
XT EX þ 2XT DheD��ðtÞ þ D��ðtÞ

� �T DeeD��ðtÞ þ 2XT DhhDhðtÞ þ 2 D��ðtÞ½ �T DehDhðtÞ þ 2XT Dhc

�
þ 2 D��ðtÞ½ �T DeC þ DwwDhðtÞ þ Dhh

DhðtÞ2

T0
þ DCC

!
ð27Þ
where
E ¼
R

X ChSð ÞT M ChSð Þ dX Dhe ¼
R

X ChSð ÞT M dX

Dee ¼
R

X M dX Dhh ¼
R

X ChSð ÞTg dX

Deh ¼
R

X g dX DhC ¼
R

X ChSð ÞT- dX

DeC ¼
R

X - dX Dww ¼
R

X G dX

Dhh ¼
R

X cv dX DCC ¼
R

X hv dX
Minimizing PX in Eq. (27), we obtain the following linear system:
EX ¼ �DheD��ðtÞ � DhhDhðtÞ � DhC ð28Þ
The fluctuation function X is linearly proportional to D��ðtÞ and DhðtÞ, which means the solution can be written as
X ¼ v0D��ðtÞ þ vhDhðtÞ þ vC ð29Þ
Substituting Eq. (29) into Eq. (27), we can calculate the free energy density of the UC as
PX ¼
1
2

D��ðtÞ½ �T M�D��ðtÞ þ D��ðtÞ½ �Tg�DhðtÞ þ D��ðtÞ½ �T-� þ 1
2

G�DhðtÞ þ 1
2

c�v
DhðtÞ2

T0
þ 1

2
h�v ð30Þ
with
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M� ¼ 1
X

vT
0Dhe þ Dee

� �
g� ¼ 1

X
1
2

DT
hevh þ vT

0Dhh

� 	
þ Deh

� 

-� ¼ 1

X
1
2

DT
hevC þ vT

0DhC

� 	
þ DeC

� 

G� ¼ 1

X
vT

CDhh þ vT
h DhC þ Dww

� �
c�v ¼

1
X

vT
h DhhT0 þ Dhh

� �
h�v ¼

1
X

vT
CDhC þ DCC

� �

ð31Þ
where M� is a 6� 6 material matrix condensed from the fourth-order instantaneous tensor Mijkl t;Wð Þ; g� is a 6 � 1 effective
matrix containing the effective instantaneous second order thermal stress tensor g�ij; -� is a 6 � 1 effective matrix containing
the effective instantaneous second order tensor -�ij.

After having uniquely determined the fluctuation functions, we can recover the local displacement increments as
Du1ðtÞ
Du2ðtÞ
Du3ðtÞ

8><>:
9>=>; ¼

Dv1ðtÞ
Dv2ðtÞ
Dv3ðtÞ

8><>:
9>=>;þ

@v1
@x1

@v1
@x2

@v1
@x3

@v2
@x1

@v2
@x2

@v2
@x3

@v3
@x1

@v3
@x2

@v3
@x3

2664
3775

y1

y2

y3

8><>:
9>=>;þ SbX ð32Þ
where S is different from S and bX is different from X due to the recovery of slave nodes and the constrained node. The incre-
ments of the local strain field DeðtÞ can be recovered as
DeðtÞ ¼ D��ðtÞ þ ChSbX ð33Þ
where DeðtÞ ¼ De11ðtÞ 2De12ðtÞ De22ðtÞ 2De13ðtÞ 2De23ðtÞ De33ðtÞb cT .
Finally, the increments of the local stress field can be recovered straightforwardly using the 3D constitutive relations for

the constituent material as
Dr t;Wð Þ ¼ M t;Wð ÞDeðtÞ þ g t;Wð ÞDhðtÞ þ- t;Wð Þ ð34Þ
The simulations of the time-dependent and nonlinear behavior of SMA composites are performed using an incremental
procedure based on Eq. (19). Once the M�; g�, and -� have been determined at the current loading, one can determine the
current values of variables from previous values and increments according to
�rcurrent ¼ �rprevious þ D�r ð35aÞ
�ecurrent ¼ �eprevious þ D�e ð35bÞ
The simulations can be readily performed without applying various boundary conditions as those are carried out using
finite element unit cell procedures.

4. Numerical examples

In this section, the proposed VAMUCH model was applied to characterize the effective time-dependent pseudoelastic
behavior of SMA fiber reinforced polymer matrix composites in which the SMA fibers are of circular shape and in square
array. Furthermore, Ws0 ¼ WT0 ¼ 0:0 is assumed to be in all numerical examples. Since the effective pseudoelastic behavior
is the strongest along the fiber direction, only longitudinal behavior was investigated in this study.

4.1. Material properties of SMA and polymer

SMA The material properties of SMA are presented in Table 1.
Polymer The polymer is assumed to be isotropic and linear thermoviscoelastic materials. The elastic relaxation modulus

of the polymer can be expressed using Prony series as
EðtÞ ¼ E0 1�
Xn

k¼1

gk 1� e�t=sk
� � !

ð36Þ
where E0 is the instantaneous Young’s modulus; gk is dimensionless modulus and sk is the time relaxation material param-
eter. For simplicity, we considered a special case, namely, n ¼ 1; g1 ¼ 0:5, and s1 ¼ 30, such that Eq. (36) is reduced to
EðtÞ ¼ 0:5E0 1þ e�t=q� �
¼ Aþ Be�t=q ð37Þ



Table 1
Thermomechanical material properties of Nitinol alloy Brinson, 1993.

Material properties Transformation temperature Model parameters

EA ¼ 67000 MPa Mf ¼ 9:0 �C CM ¼ 8:0 MPa=�C
EM ¼ 26300 MPa Ms ¼ 18:4 �C CA ¼ 13:8 MPa=�C

aA ¼ 11� 10�6 �C�1 As ¼ 34:5 �C rCrit
s ¼ 100 MPa

aM ¼ 6:6� 10�6 �C�1 Af ¼ 49:0 �C rCrit
f ¼ 170 MPa

eL ¼ 0:067
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where E0 ¼ 8000 MPa and q ¼ 30, then A ¼ B ¼ 4000 MPa. The thermal expansion of the polymer material is kept constant
as a ¼ 54� 10�6 �C�1.

The time-scale shift factor aT in Eq. (3) is determined by empirical relationship of Williams–Landel–Ferry (WLF)
(Williams, Landel, & Ferry, 1955),
log aTðTÞ ¼ �
C1 T � T0ð Þ

C2 þ T � T0ð Þ ð38Þ
where C1 and C2 are material constants determined through least squares fitting. In this example, the values of C1 and C2 are
set as C1 ¼ 4:92 and C2 ¼ 215:0.

T0 in Eq. (38) is the reference temperature and the temperature T at time t is given by
T ¼ T0 þ h ¼ T0 þ C0t ð39Þ
where C0 is the temperature change rate.
Therefore, the reduced time n t þ Dtð Þ; nðtÞ, and nðsÞ are given by
n t þ Dtð Þ ¼
Z tþDt

0
10

C1C0 t0

C2þC0 t0dt0

nðtÞ ¼
Z t

0
10

C1C0 t0

C2þC0 t0dt0

nðsÞ ¼
Z s

0
10

C1C0 t0

C2þC0 t0dt0 ð40Þ
The stress relaxation stiffness matrix LijklðtÞ
� �

in Eq. (7) is obtained as
LijklðtÞ
� �

¼ ff ½W� ð41Þ
where the coefficient ff is computed using Simpson’s rule of numerical integration as
ff ¼ Dt
6

fLþ 4fmþ fuð Þ ð42Þ
where
fL ¼ Aþ Be�
n tþDtð Þ�nðtÞ

q

fu ¼ Aþ B

fm ¼ Aþ Be�
n tþDtð Þ�n t=2ð Þ

q

The matrix ½W� in Eq. (41) is given by
½W� ¼ 1
1þ mð Þ 1� 2mð Þ

1� v v v 0 0 0
v 1� v v 0 0 0
v v 1� v 0 0 0

0 0 0 ð1� 2vÞ=2 0 0
0 0 0 0 ð1� 2vÞ=2 0
0 0 0 0 0 ð1� 2vÞ=2

2666666664

3777777775
ð43Þ
with m being the Poisson’ ratio of the polymer, which is assumed to be constant m ¼ 0:4.

The cijðtÞ
h i

is the matrix form of cijðtÞ in Eq. (7) and expressed as
cijðtÞ
h i

¼ LijklðtÞ
� �

fag ð44Þ
where fag is a column matrix containing thermal expansion coefficients of the polymer materials.



(a)

(b)

(c)

Fig. 2. Stress–strain curves of SMA in a loading–unloading loop calculated by VAMUCH at different temperatures: (a) T ¼ Af þ 11 �C ¼ 60 �C; (b)
T ¼ Ms þ 6:6 �C ¼ 25 �C; (c) T ¼ Mf þ 6:0 �C ¼ 15 �C.
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The coefficient matrix of xijðtÞ in Eq. (7) is calculated as
xijðtÞ
� �

¼ B
Dt

Xn

i¼1

Z iDt

ði�1ÞDt
e� n tþDtð Þ�nðsÞð Þ=q � e� nðtÞ�nðsÞð Þ=q� �

W½ �ds
 !

DeðiÞ½ �
(

þ
Z iDt

ði�1ÞDt
e� n tþDtð Þ�nðsÞð Þ=q � e� nðtÞ�nðsÞð Þ=q� �

W½ �ds
 !

fagDhðiÞ
)

ð45Þ



Fig. 3. Axial stress–strain curves (�r11 vs �e11) of SMA composites ðvof ¼ 0:3Þ with viscoelastic polymer matrix and elastic matrix, respectively, at
temperature T ¼ Mf þ 6:0 �C ¼ 15 �C, where the Young’s modulus of the elastic matrix has the same value as the instantaneous Young’s modulus of
polymer.

Fig. 4. Predicted axial stress–strain curves (�r11 vs �e11) of SMA polymer matrix composites ðvof ¼ 0:3Þ in a loading–unloading loop at different loading rates
when the temperature is T ¼ Mf þ 6:0 �C ¼ 15 �C.
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where DeðiÞ½ � is 6 � 1 column matrix containing strain increments during the ith time step Dt; DhðiÞ is the increment of tem-
perature change during the ith time step Dt; and n ¼ t=Dt.

4.2. Simulation results and discussions

Firstly, the stress–strain curves of pure SMA at various temperatures in a loading–unloading loop were calculated by
VAMUCH and shown in Fig. 2. One can observe that the stress-induced martensitic transformation start when the stress val-
ues reach critical values and after that the material responses soften due to the large transformation strain. The responses of
SMA before the end of martensitic transformation during loading are similar to bilinear hardening plastic deformation. After



Fig. 5. Predicted axial stress–strain curves (�r11 vs �e11) of SMA polymer matrix composites in a loading–unloading loop at various volume fractions of the
SMA fibers, eg., vof ¼ 0:05, 0.2, and 0.3 when the temperature is T ¼ Mf þ 6:0 �C ¼ 15 �C.

Fig. 6. Predicted axial stress–strain curves (�r11 vs �e11) of SMA polymer matrix composites ðvof ¼ 0:3Þ on loading at various temperatures
T ¼ 39:5 �C;29:5 �C, and 19:5 �C.
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the martensitic transformation finishes, the material becomes pure elastic martensite. When the temperature is higher than
As, see Fig. 2(a), the reverse transformation (from martensite to austenite) occurs once the stress values are lower than the
critical values during unloading. After the reverse transformation finishes, the material recovers to pure elastic austenite. If
the temperature is lower than As, see Fig. 2(b) and (c), no reverse transformation happens and large permanent deformation
occurs after unloading.

Fig. 3 shows the axial stress–strain curves of SMA fiber composites with viscoelastic polymer matrix and elastic matrix,
respectively, where the Young’s modulus of the elastic matrix has the same value as the instantaneous Young’s modulus of
polymer, E0 ¼ 8000 MPa. The volume fraction of the SMA fiber is vof ¼ 0:3. It is obviously observed that the loading and
unloading paths of viscoelastic polymer matrix composites do not coincide but form a hysteresis loop, which is apparently
different from the response of elastic matrix composite. Stemming from the viscoelastic behavior of polymer matrix, the



(a)

(b)

Fig. 7. The influences of temperature change rates on the effective viscoelastic stiffness and critical stress of macroscopic martensitic transformation of
SMA polymer matrix composites ðvof ¼ 0:2Þ: (a) positive temperature change rate, C0 ¼ 0:05, 0.1, and 0:15 �C=s; (b) negative temperature change rate,
C0 ¼ �0:1, �0.2, and �0:3 �C=s. The initial temperature is T ¼ As þ 5:0 �C ¼ 39:5 �C and the mechanical loading rate is kept constant as 0:5MPa=s.
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stress–strain curves of polymer matrix composites are strongly dependent on the loading rates. Fig. 4 illustrates the pre-
dicted axial stress–strain curves (�r11 vs �e11) of SMA polymer matrix composites ðvof ¼ 0:3Þ in a loading–unloading loop
at different loading rates when the temperature is T ¼ Mf þ 6:0 �C ¼ 15 �C. The responses of the composite become stronger
with the increase of the loading rates, which means that the faster the loading the higher the critical stress of macroscopic
transformation.

Fig. 5 demonstrates the predicted axial stress–strain curves (�r11 vs �e11) of SMA polymer matrix composites in a loading–
unloading loop at various volume fractions of the SMA fibers, e.g., vof ¼ 0:05;0:2; and 0:3 when the temperature is
T ¼ Mf þ 6:0 �C ¼ 15 �C. It is evident that the total deformation, the effective viscoelastic stiffness, and critical stress of
macroscopic martensitic transformation increase with the increase of the volume fractions of SMA fibers.

In order to investigate the influences of temperature, the effective axial stress–strain curves of SMA polymer matrix com-
posites on loading were calculated at various temperatures T ¼ 39:5 �C; 29:5 �C, and 19.5 �C and plotted in Fig. 6. The critical
stress of macroscopic martensitic transformation increase with the increase of the temperature since the critical stress of
martensitic transformation of pure SMA is higher at higher temperature as illustrated in Fig. 2.

Finally, the influences of temperature change rates on the effective viscoelastic stiffness and critical stress of macroscopic
martensitic transformation of SMA polymer matrix composites ðvof ¼ 0:2Þ on loading were calculated with: (a) positive tem-
perature change rate, C0 ¼ 0:05; 0:1, and 0.15 �C/s; and (b) negative temperature change rate, C0 ¼ �0:1; �0:2, and
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�0.3 �C/s, respectively. The initial temperature is ¼ As þ 5:0 �C ¼ 39:5 �C . The mechanical loading rate is kept constant as
0:5 MPa=s and applied simultaneously with thermal loading. From Fig. 7(a) one can observe that the effective viscoelastic
stiffness decreased but the critical stress of macroscopic martensitic transformation increased as the absolute values of pos-
itive temperature change rates increased. This is because the composite’s response is the combined responses of its con-
stituents. The critical stress of martensitic transformation of SMA increases with temperature increasing but the thermal
expansion of both constituents with the increase of temperature cause the softening response of the composites. Hence,
the influences of the absolute values of the negative temperature change rates, see Fig. 7(b), are opposite.

5. Conclusions

Based on the theoretical framework of VAMUCH, a micromechanical model that is capable of determining the macro-
scopic time-dependent and nonlinear pseudoelastic response of composites composed of polymer matrix and SMA has been
developed. The derivation of the proposed model starts from the variational statement of an energy functional generated
from the unified formulation for both polymer and SMA. Due to the time-dependent characteristics and nonlinearity of
the composite, the present model was developed by adopting an incremental procedure associated with instantaneous tan-
gential matrices. Although the numerical studies were performed on SMA fiber composites, the present model can be readily
applied to composites with arbitrary number and geometry of SMA reinforcements. The numerical results clearly demon-
strated that the viscoelasticity of polymer matrix significantly induced the viscoelastic behavior of composites, namely,
rate-dependent behavior and hysteresis behavior. Despite the pseudoelastic responses are focus of this study, the present
model is a general purpose tool which can be easily extended to model shape memory effect and the effects of viscoplastic
matrix.
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