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Abstract

The structure of Printed Circuit board (PCB) is very complicated because it
consists of woven composites and custom defined conducting layers. To im-
prove the reliability of PCB, it is critical to predict the constitutive relations
accurately. This study by implementing Mechanics of Structure Genome
(MSG), homogenizes a multilayer PCB to determine the effective mechanical
properties and coefficient of thermal expansions (CTEs). The homogeniza-
tion is divided into two steps. The first step is to obtain the yarn material
properties. The second is to write python script in TexGen4SC to generate
the woven model and combine it with conducting layers in ABAQUS to obtain
the PCB effective material properties. A new tool, which is freely accessible
at cdmHUB, was developed to integrate the two steps woven homogenization.
The homogenized material properties were validated with representative vol-
ume element (RVE) analysis. A good agreement was observed between MSG
and RVE analysis. Finally, both structural analysis and dehomogenization
were done to predict a PCB plate global responses and local stress fields.
MSG-based plate structural analysis and dehomogenization matched the di-
rect numerical simulation (DNS) very well. However, MSG is significantly
faster than DNS.
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1. Introduction

The printed circuit board (PCB), a multilayer structure, has been used
in almost all electronic devices. The principal uses of PCB are to act as
the primary structure to support all components in a circuit and to include
the copper wiring to connect the electronics components. During the service
life, PCB endures a wide range of loads, such as thermal load, vibration,
and fatigue. Nevertheless, the requirements of PCB are to have a more
complex circuit, thinner thickness and higher performance over the same or
smaller size [1]. These requirements pose challenges to the reliability of PCB.
Currently, the design of PCB relies on board level tests [2], such as three-
point bending test [3], which are expensive and time-consuming. Besides, the
board tests can only present the global response, with the local behaviors,
such as local failure initiation and stresses distribution, remaining unknown
[4]. However, simulations are able to predict both global and local response
effectively, it is necessary to run simulations to determine the most reliable
design in order to evaluate different design scenarios effectively and avoid the
defective prototypes at the early stage.

A microstructure of a PCB is shown in Figure 1. As it shows, the PCB is
the combination of copper wiring and woven composites consisting of matrix
and glass fiber [5]. The majority of work regards the PCB as a simplified
single layer board with isotropic material properties [6, 7] which did not
consider the complex microstructure of woven composites and conducting
layer. This simplification is not accurate enough for further analysis, i.e.
reliability analysis. Hence, in order to evaluate different design scenarios
effectively and avoid the defective prototypes at the early stage, it is necessary
to predict the PCB constitutive relations and local stresses accurately.

A great number of analytical models have been proposed to study the
woven composites. Ishikawa and Chou [8, 9] proposed models which are
based on the Classical Lamination Theory (CLT) and the assumptions of
iso-strain or iso-stress condition. Among these models, the Mosaic model
provides the upper and lower bounds of the in-plane material properties.
Naik [10] proposed models that are based on the mixed iso-strain or iso-
stress conditions. The in-plane material properties of these models were
validated with experimental results. Gommers [11] applied the Mori-Tanaka
inclusion method to different types of textile composites, which yields better
results than the classical iso-strain model. Although they can provide a good
estimation of the in-plane material properties, analytical models are not able
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Figure 1: The microstructure of PCB

to accurately predict the transverse material properties of woven composites.
Besides, analytical models have their own limitation. It is difficult to find a
unified model that can deal with all the scenarios of the woven composites.

Computational models are another kind of strategy to analyze the ef-
fective properties of woven composites. Usually, the microstructure of the
woven composites will be discretized using finite elements. Then, the nu-
merical methods will be applied to compute the effective properties [12]. In
general, computational models produce better results in comparison with
analytical models. In addition, computational models are also able to pre-
dict the local stress and strain fields through dehomogenization which can
be applied in the failure analysis [13]. The representative volume element
(RVE) analysis, which uses the Finite Element Analysis (FEA), is a very
popular method in the woven composites analysis. For example, some re-
searchers used RVE analysis to study the non-metallic woven composites
thermo-mechanical response [14], determined the composite beam flexural
properties [15], examined the effective properties of multilayer composites
containing both metallic and woven composite plies [16]. Girard applied
RVE to a 3D woven composites used in PCB for high-frequency application
[17]. Chen determined the material properties of multilayer PCB with wo-
ven composites [18]. However, the RVE analysis is computationally expensive
when the microstructure of the woven composites is complex. Additionally,
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it is not straightforward to apply periodic boundary conditions (PBCs) for
an RVE. Mechanics of structure genome (MSG), a semi-analytical method,
that significantly reduces the computational costs and keeps the accuracy as
FEA [19]. This approach is based on the principle of minimum information
loss (PMIL), which introduces no ad hoc assumptions and guarantees the
accuracy of the results [20]. MSG has been demonstrated to be an effective
tool for the linear and nonlinear analysis of various 2D and 3D woven com-
posites [21, 20]. MSG has been coded into a general-purpose constitutive
modeling software SwiftComp, which is able to perform homogenization and
dehomogenization of different engineering structures with complex geometry
made of anisotropic materials [22].

This paper aims at using MSG to develop a two steps multi-scale ap-
proach to homogenize the multilayer PCB to determine the effective me-
chanical properties and CTEs. The MSG-based structural analysis and de-
homogenization were then carried out to predict the global responses and
local stresses. For the homogenization, firstly, the yarn material properties
were obtained by a squared-packed model with MSG. Then, use TexGen4SC,
which integrated TexGen [23] and SwiftComp, to generate a woven model
and combine it with the copper layer. Finally, determine the multilayer PCB
material properties with MSG. The results from MSG were validated with
the RVE analysis. The MSG-based structural analysis and dehomogenization
results were compared with DNS.

2. Materials of PCB

The conducting layers of PCB usually have a very complex and aperiodic
structure, since different customers have different requirements and needs.
Some researchers ignored this layer or regarded the conducting layer as pure
copper. However, in view of significant difference of Youngs modulus and
CTEs between copper and matrix, the thermal effect is critical in the analysis
of PCB. Regarding the fact that the conducting layer is not pure copper, in
this paper, a regular copper design is adopted to simplify the analysis. The
design of the conducting layer is shown in Figure 2. In this figure, the bright
color represents the copper, the dark color the matrix .

The PCB insulating materials consist of matrix and reinforced woven
composites. The matrix, typically epoxy resin, is the dominant material that
affects the CTEs. The material properties of woven composites are influenced
not only by the fiber and matrix properties but also by the fabric counts and
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Figure 2: The conducting layer of a PCB [1]

the yarn geometry. The fabric types of the PCB are classified by the IPC (the
Association Connecting Electronics Industries) standard [24]. In this study,
we chose the 1080 fabric type, which is a 2D plain-weaved woven composite
commonly used in PCB, for the purposes of demonstration. The warp and
weft counts of the fabric are 23.6 × 18.5 per centimeter respectively. The
fiber counts are 200 per yarn. The fiber is 0.005 mm in diameter. The width
and thickness of the warp are 0.208 mm and 0.04 mm, while the width and
thickness of the weft are 0.315 mm and 0.028 mm. The size of the unit cell
for the conducting layer was chosen as 0.84 mm × 1.08 mm × 0.01 mm,
which has the same length and width as that of woven unit cell. The copper
volume fraction was chosen as 0.54. The yarn fiber volume fraction (Vf ) were
calculated by using fiber area divided yarn area. The material properties of
the fiber, matrix, and copper are summarized in Table 1.
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Table 1: PCB constituent material properties

E (GPa) ν CTEs (µ/◦C)
Fiber 73.00 0.21 16.23
Resin 6.00 0.33 40.11

Copper 121.00 0.34 16.00

3. MSG-based multi-scale modeling approach to PCB

3.1. MSG theory for homogenization

The analysis domain of MSG is structure genome (SG), which is the
smallest mathematical material block of a structure. SG can be chosen as 1D,
2D or 3D domain depending on the heterogeneity of a structure. SG works
similar to RVE concept in micromechanics for 3D models. However, there
are significant differences between SG and RVE. For example, the analysis
over the 1D or 2D SG can predict the complete set of solid properties and
local fields. However, this cannot be achieved by either 1D and 2D RVE
using the finite element analysis.

The MSG can be formulated by minimizing the information loss between
the original heterogeneous body and imaginary homogenized body. For a
linear elastic material, the information can be strain energy density. Defin-
ing the macro coordinate as xi and the micro coordinate as yi, these two
coordinates are related by using the equation yi = xi/δ, where δ is a small
parameter that describes SG. Hence with MSG, we can express the kinemat-
ics of the original heterogeneous body in terms of the imaginary homogeneous
body as

ui(x, y) = ūi(x) + δχi(x, y) (1)

where ui is the displacement of the original heterogeneous body; ūi is the
displacement of the homogenized body; χi represents the fluctuating function
which refers to the difference between the two fields.

Therefore the strain fields of the heterogeneous body can be written as

εij(x, y) = ε̄ij(x) + χ(i,j) (2)

where ε̄ij(x) = 1
2

(
∂ūi
∂xj

+
∂ūj
∂xi

)
is the strain field of the homogenized body. The

subscript represents the operation as A(i,j) = 1
2

(
∂Ai

∂yj
+

∂Aj

∂yi

)
. The kinematic
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variables of the homogenized body in terms of the original model can be
defined as

ūi = 〈ui〉 ε̄ij = 〈εij〉 (3)

where 〈·〉 represents the volume average over the domain. The equations
above imply the following constraints on the fluctuating functions

〈χi〉 = 0
〈
χ(i,j)

〉
= 0 (4)

The strain energy difference between the original model and the homog-
enized model is

Π =

〈
1

2
Cijklεijεkl + βijεijθ +

1

2
cv
θ2

T0

〉
−
〈

1

2
C∗ijklε̄ij ε̄kl + β̄ij ε̄ijθ +

1

2
c̄v
θ2

T0

〉
= 0

(5)
where Cijkl represents the components of the fourth-order elasticity tensor,
βij are components of the second-order tensor of thermal stress coefficients,
cv is the specific heat per unit volume at constant volume, T0 is the reference
temperature at which the constituent material is stress free, θ denotes the
difference between the actual temperature and the reference temperature.
We assume that θ is constant with respect to time and space coordinates,
which is a common practice in the literature.

Regarding the homogenized model as given (i.e. C∗ijkl and ε̄ij cannot be
varied), the minimization of Π yields the following variation statement

min
χi∈Eq.(4)

〈
1

2
Cijklεijεkl + βijεijθ +

1

2
cv
θ2

T0

〉
=

min
χi∈Eq.(4)

{〈
1

2
Cijkl

(
ε̄ij + χ(i,j)

) (
ε̄kl + χ(k,l)

)〉
+
〈
βij
(
ε̄ij + χ(i,j)

)〉
+

〈
1

2
cv
θ2

T0

〉}
(6)

Denoting ε̄ =
[
ε̄11 ε̄22 ε̄33 2ε̄23 2ε̄13 2ε̄12

]
and w =

[
χ1 χ2 χ3

]
.

Then the function of the variational statement of Eq. (6) can be written in
the following form as

U =
1

2

〈
(Γhw + ε̄)TC(Γhw + ε̄)

〉
+ 〈β(Γhw + ε̄)θ〉+

1

2

〈
cv
θ2

T0

〉
(7)
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with

Γh =



∂
∂y1

0 0

0 ∂
∂y2

0

0 0 ∂
∂y3

0 ∂
∂y3

∂
∂y2

∂
∂y3

0 ∂
∂y1

∂
∂y2

∂
∂y1

0


(8)

For a 3D SG, with the finite element method, we can express w using
shape functions defined over SG as

w(xk, yj) = S(yj)V (xk) (9)

where S is the standard shape function which depends on the type of ele-
ments one uses; V is the nodal value which needs to be solved for fluctuating
functions.

Substituting Eq. (9) into Eq. (7),we can obtain the discretized version
of the strain energy function

U =
1

2
(V TEV + 2V TDhεε̄+ ε̄TDεεε̄+ 2V TDhθθ + 2ε̄TDεθθ +Dθθ

θ2

T0

) (10)

where

E =
〈
(ΓhS)TC(ΓhS)

〉
Dhε =

〈
(ΓhS)TC

〉
Dεε = 〈C〉

Dhθ =
〈
(ΓhS)Tβ

〉
Dεθ = 〈β〉 Dθθ = 〈cv〉

(11)

Minimizing U in Eq. (10) subject to constraints gives the following linear
system

EV = −Dhεε̄−Dhθθ̄ (12)

The above equation shows that V linearly depends on ε̄ and θ. Therefore,
the solution to V can be symbolically written as

V = V0ε̄+ Vθθ (13)

With Eq. (13) being substituted into Eq. (10), the strain energy stored
in the SG is shown as

U =
1

2
ε̄T (V T

0 Dhε +Dεε)ε̄+ ε̄T
[

1

2
(DT

hεVθ + V T
0 Dhθ) +Dεθ

]
θ

+
1

2
(V T

θ DhθT0 +Dθθ)
θ2

T0

≡ 1

2
ε̄TC∗ε̄+ ε̄Tβ∗θ +

1

2
c∗v
θ2

T0

(14)
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where C∗ represent the effective stiffness matrix, β∗ is the effective thermal
stress coefficient, c∗v is the effective specific heat.

The effective coefficient of thermal expansion is

α∗ = −(C∗)−1β∗ (15)

The fluctuating function can be obtained as

w = S(V0ε̄+ Vθθ) (16)

The local displacement can be obtained as

ui = ūi + xα(Cαi − δαi) + εwjCji (17)

where ui is the local displacement, ūi the macroscopic displacement. Since
SG has coordinates yk with corresponding xk in the macroscopic structural
model , ūi should be expressed as

ūi = ūi(xk0) + xkūi,k (18)

where xk0 is the center of the SG and ūi,k is the gradient along xk evaluated
correspond to xk0 .

The local strain can be obtained as

ε = ΓhS(V0ε̄+ Vθθ) + ε̄ (19)

The local stresses can be obtained in accordance with Hook’s law as

σ = Cε+ βθ (20)

This paper also used MSG-based Kirchhoff-Love plate model analysis.
The formulation for the plate model is shown in Appendix A.

3.2. Modeling framework of PCB

The MSG modeling of PCB can be divided into three steps: homogeniza-
tion (micro-scale and macro-scale), structural analysis and dehomogenization
as shown in Figure 3.
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Figure 3: MSG analysis flow chart

3.2.1. PCB homogenization

The first step of the MSG homogenization of woven composites reinforced
PCB is to identify the SG of yarn. As the yarn is heterogeneous over the
cross section and uniform along the yarn path, a 2D square-packed SG has
been identified for the yarn homogenization. The 2D SG is shown in Figure
4. Although the domain of the SG is 2D, the strain energy is expressed in 3D
field. Thus, MSG can provide the complete set of the solid effective material
properties. The result from MSG will be compared with a 3D RVE model.

The next step is to do the macro homogenization to obtain the constitu-
tive relations of PCB. TexGen4SC was used to generate the woven model.
Currently, TexGen4SC graphic user interface (GUI) cannot create the woven
composite with different warp and weft cross section. A python script has
been written to create the woven model with different cross section between
warp and weft. The script is accessible at cdmHUB [25]. The voxel mesh
was used in TexGen4SC to avoid distorted elements. However, voxel mesh
requires a large number of elements to obtain accurate representation of the
woven composite geometry. Therefore, a convergence study was carried out
to determine the mesh size of the woven model. A new tool was developed
to integrate the two steps homogenization, which significantly improved the
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Figure 4: Square packed SG of the yarn [14]

efficiency of determining the PCB fabric type at the design stage. The new
tool is freely accessible at cdmHUB [25]. The woven model was then exported
to Abaqus and merged with the conducting layers at both the top and the
bottom. Thus, a double-sided PCB model had been created. The length and
width of the PCB are the same as those of woven SG, which are 1.08 mm
and 0.84 mm, respectively. The thickness is 0.1 mm. The building process
is summarized in Figure 5. MSG can also predict the constitutive relations
in the form of beam stiffness matrix or plate stiffness matrix. The predicted
beam stiffness matrix or the plate stiffness matrix can be directly used for
the 1D beam or 2D plate analysis. This paper used 3D solid model and
2D plate model to capture the constitutive relations of the PCB. Note for a
double-sided PCB, the periodicity does not exist in the y3 direction. Apply-
ing periodic boundary conditions to all the directions will make the material
stiffer, resulting in larger Young’s modulus. Partial aperiodic boundary con-
ditions (y3 direction) should be chosen for a more accurate prediction for
effective material properties. It can easily be done with MSG. In this paper,
both the periodic and partially aperiodic scenarios are investigated.
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Figure 5: The SG of PCB

3.2.2. PCB structural analysis and dehomogenization

After the homogenized constitutive relations are obtained, we need to
evaluate whether the homogenized properties are satisfactory or not. One
can compare the structural responses of the model using homogenized prop-
erties and the original material properties to evaluate the homogenized prop-
erties. For the purpose of demonstration, this paper examined the stress and
displacement fields in a double-sided PCB plate which is shown in Figure 6.
This plate was built by duplicating the PCB SG 10 times along the length
and width direction. Therefore, the length, width and hight of the plate is
10.8 mm × 8.4 mm × 0.1 mm. The plate is fixed at one end and subject to
100 KPa pressure on the top surface. The model was discretized into about
6 million C3D8 elements. The DNS was done to be the reference case. The
analysis was also done for the model which had the same dimension as the
DNS but with homogenized constitutive relations.

The MSG-based dehomogenization can provide the local stresses and
strains, which can be used for further analysis, like that of fatigue. The
input to perform dehomogenization is the average global displacements and
global strains. The average strain can be computed from the structural anal-
ysis. The local strains and stresses are obtained from Eqs. (19) and (20),
respectively. The local stresses were compared with the DNS for validation.
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Figure 6: DNS model of PCB

4. Results and discussion

Based on the yarn information provided in section 2. The warp and weft
Vf were calculated as 0.54 and 0.41 respectively. The effective properties
of the yarn were computed based on the 2D squared packed SG as shown
in Figure 4. Table 2 presents the warp and weft effective properties from
MSG and RVE with PBCs applied to all the three directions. Diff 1 and
Diff 2 represent the difference between MSG and RVE analysis of warp and
weft respectively. As one can observe from the table, the nine engineering
constants and CTEs computed using MSG matches very well with 3D RVE
results, the differences within 1 %. However, MSG is about 8 times faster
than 3D FEA. Besides, this table also presents that the Young’s modulus and
shear modulus of warp are larger than those of the weft. But CTEs of warp
are smaller than that of weft. This difference is caused by the different fiber
volume fraction Vf between warp and weft, because fiber has larger Young’s
modulus and smaller coefficient of thermal expansion in terms of matrix. The
larger Vf of the warp results in larger Young’s modulus and shear modulus
compare with weft.

Before the homogenization of PCB was carried out, a convergence study
was done to determine the mesh size of the woven SG. E2 was chosen as
the parameter to determine whether the result converges or not. Figure 7
presents the convergence study result. It shows that the model converges
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Table 2: Effective properties of Yarn

Effective
Properties

MSG
Warp

RVE
Warp

MSG
Weft

RVE
Weft

Diff 1 Diff 2

E1(GPa) 42.21 42.32 33.13 33.12 -0.26% -0.03%
E2(GPa) 18.40 18.38 13.30 13.34 0.11% 0.30%
E3(GPa) 18.40 18.38 13.30 13.34 0.11% 0.30%
G23(GPa) 4.88 4.85 3.86 3.87 0.61% 0.26%
G13(GPa) 6.35 6.38 4.72 4.70 -0.47% -0.42%
G12(GPa) 6.35 6.38 4.72 4.70 -0.47% -0.42%
ν23 0.27 0.27 0.32 0.32 0.00% 0.94%
ν13 0.26 0.26 0.27 0.27 -0.77% 0.74%
ν12 0.26 0.26 0.27 0.27 -0.77% 0.74%
α11(µ/◦C) 17.94 17.83 18.94 18.87 0.61% 0.39%
α22(µ/◦C) 28.23 28.10 32.20 32.24 0.46% -0.12%
α33(µ/◦C) 28.23 28.10 32.20 32.24 0.46% -0.12%

when the number of nodes reaches 52,111. The homogenized material prop-
erties of the woven are presented in Table 3. Diff 1 is the difference between
MSG aperiodic and RVE. Diff 2 represents the difference between MSG and
RVE. The result shows that all the engineering constants and CTEs from
MSG (periodic) agree well with RVE analysis. Besides, one can also observe
that the Young’s modulus of MSG Aperiodic is smaller than that of MSG
and RVE. This is expected, as the periodic conditions in the y3 makes the
material stiffer.

Table 4 presents the solid effective properties of the PCB computed from
MSG and RVE analysis. Again, Diff 1 is the difference between MSG ape-
riodic and RVE. Diff 2 represents the difference between MSG and RVE.
Similarly, one can observe that all the engineering constants and CTEs from
MSG agree well with RVE analysis, and MSG Aperiodic Young’s modulus
is smaller than RVE. However, MSG is approximately 10 times faster than
RVE analysis. Besides, when comparing PCB with woven composites, one
can observe that the Young’s modulus and shear modulus are significantly
larger than the woven composites. In view of the fact that the conducting
layer is just 0.01 mm in thickness, it indicates that the conducting layer can
significantly influence the PCB behavior.

The none-zero components of the plate stiffness matrix are A11 = 2.02×
103 N/mm, A22 = 2.22× 103 N/mm, A12 = A21 = 4.52× 102 N/mm, A66 =
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Table 3: Effective properties of woven

Effective
Properties

MSG
Aperiodic

MSG RVE Diff 1 Diff 2

E1(GPa) 13.44 13.91 13.99 -3.93% -0.57%
E2(GPa) 15.22 15.6 15.74 -3.30% -0.89%
E3(GPa) 9.37 9.47 9.55 -1.88% -0.84%
G23(GPa) 3.09 3.10 3.12 -0.96% -0.64%
G13(GPa) 3.04 3.04 3.06 -0.65% -0.65%
G12(GPa) 3.48 3.49 3.51 -0.85% -0.57%
ν23 0.32 0.32 0.32 0.00% 0.00%
ν13 0.34 0.34 0.34 0.00% 0.00%
ν12 0.20 0.19 0.19 5.26% 0.00%
α11(µ/◦C) 23.83 23.81 23.53 1.27% 1.19%
α22(µ/◦C) 20.52 20.73 20.54 -0.10% 0.93%
α33(µ/◦C) 41.38 41.32 40.96 1.03% 0.88%

Table 4: Effective properties of PCB

Effective
Properties

MSG
Aperiodic

MSG RVE Diff 1 Diff 2

E1(GPa) 19.56 19.75 19.77 -1.06% -0.10%
E2(GPa) 21.21 21.38 21.37 -0.75% 0.05%
E3(GPa) 10.07 10.30 10.27 -1.95% 0.29%
G23(GPa) 3.20 3.24 3.23 -0.93% 0.31%
G13(GPa) 3.15 3.19 3.18 -0.94% 0.31%
G12(GPa) 4.97 4.97 4.97 0.00% 0.00%
ν23 0.33 0.33 0.33 0.00% 0.00%
ν13 0.34 0.34 0.34 0.00% 0.00%
ν12 0.20 0.20 0.20 0.00% 0.00%
α11(µ/◦C) 21.43 21.52 21.50 -0.33% 0.09%
α22(µ/◦C) 19.71 19.84 19.87 -0.81% -0.15%
α33(µ/◦C) 42.78 42.06 42.19 1.40% -0.31%
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Figure 7: Convergence study of woven SG

4.97 × 101 N/mm, D22 = 2.21 N·mm, D12 = D21 = 4.01 × 10−1 N·mm,
D66 = 7.23 × 10−1 N·mm, which were used in the 2D macroscopic plate
analysis. The outputs, global displacement and curvatures, were used in the
MSG-based dehomogenization to get local stress and strain fields.

Figure 8 presents the global displacement ū3 along x2 axis. The result
shows an excellent match between DNS and MSG-based plate model. The
difference of displacement at the tip of plate between these two approaches
is 0.52 %. In addition, there is little difference between MSG-based solid
model with periodic and aperiodic conditions. However, one can observe
a significant difference between DNS and MSG-based solid model at the
tip. The difference reaches 28.46 %. This indicates MSG-based plate model
predicts more accurate result than solid model for this bending problem of
PCB.
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Figure 8: The comparison of ū3 of four different models

Figure 9 shows the stress fields of σ11 , σ22 and σ12 through the thickness
of the PCB plate. The stress fields were plotted at x1 = 4.4 mm, x2 = 5.64
mm, x3 = 0 − 0.10 mm. The result indicates that the differences of DNS
and MSG dehomogenization are acceptable. Note that the accuracy can be
improved by converting the linear element into quadratic element, like the
C3D20 brick element. However, the computation cost of the DNS can be
extremely expensive. The author’s computation resources is not adequate
for DNS using quadratic elements. Hence, in this study, only the examined
SG used quadratic elements. Overall, MSG has captured all the trends and
discontinuities of the stresses distribution. However, MSG is much more
efficient than DNS, as the dehomogenization took only 5 mins with 1 CPU,
while DNS took 36 hours with 100 CPUs.
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(a) σ11

(b) σ22

(c) σ12

Figure 9: Stress fields in PCB through thickness
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5. Conclusion

In this paper, the MSG was employed to do the homogenization, struc-
tural analysis, and dehomogenization of a multilayer woven composites re-
inforced PCB. This approach simplified the original complicated structural
analysis into constitutive modeling and macroscopic structural analysis, keep-
ing the accuracy of the analysis and improving the efficiency significantly. As
for the homogenization of PCB with MSG, it has been divided into two steps.
The first step is to homogenize the yarn based on the fabric information of
the yarn and fiber and matrix properties. The second step is to compute the
PCB constitutive relations with the homogenized yarn, matrix, and copper.
A tool was developed to integrate the two steps homogenization. The homog-
enized solid properties from MSG show good agreements with RVE analysis.
However, the Young’s modulus is larger as the periodic conditions in the y3

direction makes the material stiffer. With regard to the structural analysis,
it shows the MSG-based plate analysis predicted global response better than
the analysis using solid homogenized properties. Thus, it is better to use the
plate constitutive relations to conduct PCB structural analysis instead of us-
ing homogenized solid properties. Finally, MSG dehomogenization predicted
the local stress fields fairly well in comparison with DNS. However, MSG
dehomogenizaiton approach is much more efficient than DNS. Overall, this
research work has shown the capability of MSG to predict the multilayer
PCB constitutive relations and structural responses. This novel approach
can be an effective tool in the design and analysis of PCB.
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Appendix A. MSG-based Kirchhoff-Love plate model

To derive the Kirchhoff-Love plate model using MSG, the 3D displace-
ment field can be expressed in terms of the 2D displacement variables admit-
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ted by the Kirchhoff-Love plate model as:

u1(x1, x2, y1, y2, y3) = ū1(x1, x2)− δy3ū3,1(x1, x2) + δw1(x1, x2, y1, y2, y3)

u2(x1, x2, y1, y2, y3) = ū2(x1, x2)− δy3ū3,2(x1, x2) + δw2(x1, x2, y1, y2, y3)

u3(x1, x2, y1, y2, y3) = ū3(x1, x2) + δw3(x1, x2, y1, y2, y3)

(A.1)

Where ui and ūi denote the displacements of the original 3D heteroge-
neous structure and the 2D plate model respectively. Plate displacements are
functions of x1 and x2. w1, w2, and w3 are unknown fluctuating functions
which need to be solved. In this formulation, there are no apriori assump-
tions about the kinematics such as the commonly invoked Kirchhoff-Love
assumptions. The introduction of the fluctuating functions enables to de-
scribe all the possible displacements for every material point of a plate-like
structure made of textile composites, which cannot be adequately expressed
by the simple kinematics of the Kirchhoff-Love model.

By dropping the small terms based on variation asymptotically method
(VAM), the 3D strain filed can be expressed as

ε11 = ε11 + δy3κ11 + w1|1

ε22 = ε22 + δy3κ22 + w2|2

ε33 = w3|3

2ε12 = 2ε12 + 2δy3κ12 + w1|2 + w2|1

2ε13 = w1|3 + w3|1

2ε23 = w2|3 + w3|2

(A.2)

Where the plate strains and curvatures can be defined as

εαβ(x1, x2) =
1

2
(ūα,β + ūβ,α) καβ(x1, x2) = −ūαβ (A.3)

The total potential energy of the 3D structure can be defined as

Π =
1

2

∫
s

U2Dds−W (A.4)

Where U2D is the 2D strain energy density defind as

U2D =
1

2
〈σijεij〉 =

1

2
〈Cijklεijεkl〉 (A.5)
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Following the same procedure as for MSG solid model with the fluctuating
functions constraints give

〈wi〉 = 0 (A.6)

Drop small terms according to VAM and minimize the potential energy.
Imposing the constraints for fluctuating functions to solve wi. The 3D strain
filed can be expressed in terms of 2D plate strain and curvatures.

The 2D kinetic variables called plate stress resultants are defined as

∂U2D

∂ε11

= N11
∂U2D

∂ε22

= N22
∂U2D

∂2ε12

= N12

∂U2D

∂κ11

= M11
∂U2D

∂κ22

= M22
∂U2D

∂2κ12

= M12

(A.7)

We can get the plate constitutive relation to relate the plate stress resul-
tants and strains and curvatures as

N11

N22

N12

M11

M22

M12


=



A11 A12 A16 B11 B12 B16

A12 A22 A26 B12 B22 B26

A16 A26 A66 B16 B26 B66

B11 B12 B16 D11 D12 D16

B12 B22 B26 D12 D22 D26

B16 B26 B66 D16 D26 D66





ε11

ε22

2ε12

κ11

κ22

2κ12


(A.8)

In Eq. (A.8), the 6×6 plate stiffness matrix is composed of the A, B, and D
matrices. Although we used the same notation of A, B, and D from CLPT,
the way to obtain it has no relations to that has been used to derive CLPT
[19, 26]. The plate stiffness matrix can be directly used in Abaqus or ANSYS
to conduct the macroscopic analysis. The formulation of obtaining the plate
stiffness matrix and dehomogenization can be found in Yu’s paper [26].
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