

cdmHUB.org

The Composites Design & Manufacturing HUB:

A Platform for Pervasive Composites Learning in the Cloud

R. Byron Pipes Wenbin Yu Johnathan Goodsell

The Vision

- Simulation can provide the foundation for a revolution in composites design, manufacturing and certification
- Finger tip access to composites simulation tools anywhere anytime on any devices - real commercial codes connected to HPC resources in the cloud.
- Certifying composite product manufacturing and performance by simulation is clearly within reach
- Accelerated pervasive learning about composites and the tools necessary for their design

The Mission

Convene the composites community to advance certification by analysis by education and evaluation of composites simulation tools and establishing simulation best practices.

The Online Composites Community

Over 2000 Users to Date!

On our way to 10,000!

WE ARE

the composites community of designers, manufacturers, researchers, engineers,

cdmHUB Platform Overview

USERS

Researchers | Engineers | Manufacturers | Educators

cdmHUB Goals

 Increase in the rate of development and deployment of composites simulation tools and the user community by an order of magnitude

Launch a platform

- Host and integrate existing simulation tools
- Create a new array of simulation tools
- Develop the human talent to support composites design and manufacturing simulation
- Create for composites
 - Virtual classroom
 - Virtual lab
 - Virtual factory

Benefits to the cdmHUB Community

Education in the use of composites simulation tools:

- What tools are available?
- What tool is best for a specific problem?
- What are the tool functionalities?
- How is a particular tool connected with other tools?
- Tool development for manufacturing and processing simulation
- Expert evaluation of simulation tool taxonomy and Tool Maturity Level (TML)
- Establishment of protocols for simulation tool validation and verification (V&V)
- Access to data sets required for TML and V&V PURI

Simulation Tools Advance Composites Education

Simulation Tools enable Students to connect the Fundamentals to the Applications

The Pipes-Pagano "Free-Edge" Interlaminar Stress Problem

Pipes, R. B. and Pagano, N. J., "Interlaminar Stresses in Composite Laminates Under Uniform Axial Extension," J. Comp. Matl., 1970

Pipes, R. B., and Pagano, N. J., "Interlaminar Stresses in Composite Laminates-An Approximate Elasticity Solution," J. App. Mech., 1974

Goodsell, J., Pipes, R.B., "Interlaminar Stresses in Angle-Ply Laminates: a Family of Solutions," Journal of Applied Mechanics, Vol. 83, No. 5, (2016). Pipes, R. B., Goodsell, J., Ritchey, A., Dustin, J, and Gosse, J., "Interlaminar Stresses in Composite Laminates: Thermoelastic Deformation," Comp. Sci. Tech., 2010

Goodsell, J., Pagano, N. J., Kravchenko, O., and Pipes, R. B., "Interlaminar Stresses in Composite Laminates Subjected to Anticlastic Bending Deformation," J. App. Mech., 2013

Multiple solutions at your fingertips

UNIVERSI

Accelerate Exploration and Learning

 $|kh_0|$

$$U(y,z) = \sum_{n=1}^{\infty} \frac{2\alpha^{1/2}}{n\pi\nu^2} \Lambda_k \frac{e^{-\nu\alpha^{-1/2}(b-y)} - e^{-\nu\alpha^{-1/2}(b+y)}}{1 + 2e^{-2\nu\alpha^{-1/2}b}} \cos\nu\left(z + \frac{mh_0}{2}\right)$$
$$U_y(y,z) = \sum_{n=1}^{\infty} \frac{2}{n\pi\nu} \Lambda_k \frac{e^{-\nu\alpha^{-1/2}(b-y)} + e^{-\nu\alpha^{-1/2}(b+y)}}{1 + 2e^{-2\nu\alpha^{-1/2}b}} \cos\nu\left(z + \frac{mh_0}{2}\right)$$
$$U_z(y,z) = -\sum_{n=1}^{\infty} \frac{2\alpha^{1/2}}{n\pi\nu} \Lambda_k \frac{e^{-\nu\alpha^{-1/2}(b-y)} - e^{-\nu\alpha^{-1/2}(b+y)}}{1 + 2e^{-2\nu\alpha^{-1/2}b}} \sin\nu\left(z + \frac{mh_0}{2}\right)$$

$$\upsilon = \frac{n\pi}{mh_0}$$

$$\Lambda_k = \sum_{k=1}^m \begin{cases} \upsilon \left(\Phi_E + \Phi_T \right) \left[\sin \upsilon \left(z + \frac{mh_0}{2} \right) \right]_{(k-1)h_0}^{kh_0} \\ + \Phi_B \left[\cos \upsilon \left(z + \frac{mh_0}{2} \right) + \upsilon z \sin \upsilon \left(z + \frac{mh_0}{2} \right) \right]_{(k-1)h_0}^{kh_0} \end{cases}$$

$$\Phi_E = \frac{S_{16}}{S_{11}} \varepsilon_0$$

$$\Phi_T = \frac{S_{55}}{\alpha S_{66}} \alpha_{xy} \Delta T$$

$$\Phi_B = \frac{S_{16}}{S_{11}} \kappa_x$$

Composites Fundamentals

Composites Fundamentals

And More...

Classical	Advanced	Processing
Compositos	Compositos	Trocessing
Analysis	Analysis	
Classical Laminate	Free Edge Elasticity	Autocatalytic
Plato Theory	Solution	Dogroo of Curo
Thate Theory	Dorution	(Curo Kinotice)
Effective Lamina	Geometrically Exact	DiBenedetto
and Lominato	Boom Theory	Fountion (Tg)
Droportiog	Dealli Theory	Equation (1g)
Fiber Specing and	LAMMDS	
Volumo Exaction	(Moloculor	
volume Praction	(Molecular Dumentice)	
Tih on Volumo	Dynamics)	
Fiber volume	SwittComp	
Fraction		
G_to_K Orthotropic	SwiftComp Pro	
Conversion &		
K_to_G Conversion		
Halpin-Tsai	Variational	
Micromechanics	Asymptotic Beam	
Model	Analysis	
Laminate Failure	Viscoelastic Shear	
Analysis	Lag	
Off-Axis Lamina		
Moduli and		
Strength		
Plane-Stress		
Compliance		
Transform		

A Full-Range of Course Management Features

Mechanics of Composite Materials

- Anisotropic Elasticity
- Lamina Analysis
- Micromechanics
- Classical Laminated Plate Theory
- Elementary Damage and Failure
- Interlaminar Stresses

Experimental Characterization of Advanced Composite Materials

Experiment	Output	
Microscopy	Fiber volume fraction, fiber spacing, void content	
0-degree and 90-degree tension	Lamina tensile moduli: E ₁ , E ₂ , v ₁₂ Lamina tensile strengths: X ^T , Y ^T	
±45-degree tension	Lamina shear moduli: G_{12} Lamina shear strength: S	
Off-axis tension (often 10-degree, 30- degree, 45-degree and 60-degree)	Lamina off-axis modulus, E _x Lamina biaxial strength	
Laminate tension (often [0/±45/90]s, [0/±45/0]s, [±25]s, etc)	Laminate tensile modulus: E _x Laminate uniaxial tensile strength	
Lamina thermoelastic	Lamina coefficients of thermal expansion: α_1 , α_2	
Laminate thermoelastic	Laminate coefficients of thermal expansion: α_x , α_y , α_{xy}	
Lamina and laminate flexure	Lamina and laminate flexure modulus Lamina and laminate flexure strength	
Laminate open-hole tension	Laminate open-hole strength	
Lamina double-cantilever beam (DCB)	Mode I energy release rate, G_{Ic}	
Lamina end-notch flexure (ENF)	Mode II energy release rate, G _{IIc}	

Closing Remarks

- Simulation can accelerate learning, in both a theory and experimentalbased course
- Education must address the "whatto" and the "where-to/when-to" as well as the "how-to"
- 3. Simulation must be grounded in validation
- 4. The cdmHUB provides tools and a platform for the above

cdmHUB.org: Learn Composites in the Cloud

