
Mechanics of Materials 40 (2008) 812–824
Contents lists available at ScienceDirect

Mechanics of Materials

journal homepage: www.elsevier .com/locate /mechmat
Variational asymptotic micromechanics modeling of heterogeneous
piezoelectric materials

Tian Tang, Wenbin Yu *

Department of Mechanical and Aerospace Engineering, Utah State University, Logan, UT 80322-4130, USA
a r t i c l e i n f o

Article history:
Received 27 September 2007
Received in revised form 29 April 2008

Keywords:
Piezoelectric heterogeneous materials
Variational asymptotic method
Mircomechanics
VAMUCH
0167-6636/$ - see front matter � 2008 Elsevier Ltd
doi:10.1016/j.mechmat.2008.04.007

* Corresponding author. Tel.: +1 435 7978246; fa
E-mail address: wenbin.yu@usu.edu (W. Yu).
a b s t r a c t

In this paper, a new micromechanics model is developed to predict the effective properties
and local fields of heterogeneous piezoelectric materials using the variational asymptotic
method for unit cell homogenization (VAMUCH), a recently developed micromechanics
modeling technique. Starting from the total electric enthalpy of the heterogenous contin-
uum, we formulate the micromechanics model as a constrained minimization problem
using the variational asymptotic method. To handle realistic microstructures in engineer-
ing applications, we implement this new model using the finite element method. For val-
idation, a few examples are used to demonstrate the application and accuracy of this
theory and the companion computer program – VAMUCH.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Piezoelectric materials such as PZT (Lead, Zirconium,
Titanate) are widely used in sensors and actuators due to
their property of converting electric energy into mechani-
cal energy, and vice versa. However, bulk piezoelectric
materials have several drawbacks for instance their
weight, disadvantage of shape control, and acoustic imped-
ance, therefore composite piezoelectric materials are usu-
ally a better technical solution in the case of many
applications such as ultrasonic imaging, sensors, actuators
and damping. Recently, piezoelectric composites are devel-
oped by combining piezoelectric materials with passive
materials to form a variety of types of piezoelectric com-
posite systems. To facilitate the design of these piezoelec-
tric composites, convenient and accurate analysis tools are
apparently indispensable.

In the past several decades, numerous approaches have
been proposed to predict the effective properties of piezo-
electric composites from known constituent information.
Simple analytical approaches based on Voigt or Reuss
hypothesis have been applied to predict the behavior of a
. All rights reserved.

x: +1 435 7972417.
limited class of composite geometries (Newnham et al.,
1978; Banno, 1983; Chan and Unsworth, 1989; Smith
and Auld, 1991). Variational bounds have been obtained
for describing the complete overall behavior which are
useful tools for theoretical consideration (Bisegna and
Luciano, 1996, 1997; Li and Dunn, 2001). However the
range between bounds can be very large for certain effec-
tive properties. Eshelby’s solutions (Eshelby, 1957) have
been extended to include piezoelectric constituents
(Wang, 1992; Benveniste, 1992; Dunn and Taya, 1993b;
Chen, 1993). Such mean field-type methods are capable
of predicting the entire behavior under arbitrary loads.
However, they use averaged representations of the electric
and mechanical field within the constituents of the com-
posite, i.e., they do not account for the local fluctuations
of the field quantities. This restriction can be overcome
by a finite element method-based micromechanical analy-
sis (Gaudenzi, 1997; Poizat and Sester, 1999). In such mod-
els the representative unit cell and the boundary
conditions are designed to capture a few special load cases
which are connected to specific deformation patterns. This
allows the prediction of only a few key material parame-
ters. The finite element unit cell models which can capture
the entire behavior have recently appeared (Lenglet et al.,
2003; Sun et al., 2001; Pettermann and Suresh, 2000; Li,
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2000; Pastor, 1997; Berger et al., 2006). Other studies
(Dunn and Taya, 1993a, 1994; Huang and Kuo, 1996; Fakri
et al., 2003) have focused on the classical extensions of
Eshelby’s solution for finite inclusion volume fractions,
i.e., the Mori–Tanaka (Mori and Tanaka, 1973; Benveniste,
1987) self-consistent approach (Hill, 1965; Budiansky,
1965), differential approaches (McLaughlin, 1977; Norris,
1985), and models based on the generalized Mori–Tanaka
and self-consistent approaches (Odegard, 2004).

In this paper, a novel micromechanics model based on
the framework of variational asymptotic method for unit
cell homogenization (VAMUCH) has been developed to
predict the effective properties and local fields of piezo-
electric composites. This model invokes two essential
assumptions within the concept of micromechanics for
composites with an identifiable unit cell (UC):

� Assumption 1: The exact field variables have volume
average over the UC. For example, if ui and / are respec-
tively the exact displacements and electric potential
within the UC, there exist vi and w such that

vi ¼
1
X

Z
X

ui dX � huii ð1Þ

w ¼ 1
X

Z
X

/ d X � h/i ð2Þ

where X denotes the domain occupied by the UC and its
volume.

� Assumption 2: The effective material properties obtained
from the micromechanical analysis of the UC are inde-
pendent of the geometry, the boundary conditions, and
loading conditions of the macroscopic structure, which
means that effective properties are assumed to be the
intrinsic properties of the material when viewed
macroscopically.
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Fig. 1. Coordinate systems for heterogenous materials (o
Note that these assumptions are not restrictive. The
mathematical meaning of the first assumption is that the
exact solutions of the field variables can be integrated over
the domain of UC, which is true almost all the time. The
second assumption implies that we will neglect the size ef-
fects of the material properties in the macroscopic analysis,
which is an assumption often made in the conventional
continuum mechanics. Of course, the micromechanical
analysis of the UC is only needed and appropriate if
g ¼ h=l� 1, with h as the characteristic size of the UC
and l as the characteristic wavelength of the deformation
of the structure. Other assumptions such as particular
geometry shape and arrangement of the constituents, spe-
cific boundary conditions applied to the UC, and prescribed
relations between local fields and global fields are not nec-
essary for the present study.

This new micromechanical modeling approach has been
successfully used to predict the effective thermoelastic
properties including elastic constants, specific heats, and
coefficients of thermal expansions, and effective
thermal conductivity and associated local fields (Yu and
Tang, 2007a,b; Tang and Yu, 2007a). It is also applied to
accurately predict the initial yielding surface and elasto-
plastic behavior of metal matrix composites (Tang and
Yu, 2007b).
2. Piezoelectricity and piezoelectric composites

The elastic and the dielectric responses are coupled in
piezoelectric materials where the mechanical variables of
stress, and strain are related to each other as well as to
the electric variables of electric field and electric displace-
ment. The coupling between mechanical and electric
fields is described by piezoelectric coefficients. Using the
11 , nx
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nly two-dimensional (2D) UC is drawn for clarity).
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conventional indicial notation, the linear coupled constitu-
tive equations are expressed as

rij ¼ Cijkl�kl � eijkEk

Ti ¼ eikl�kl þ kijEj
ð3Þ

where rij, �ij, Ei and Ti are the stress tensor, strain tensor,
electric field vector, and the electric displacement vector,
respectively. Cijkl denotes fourth-order elasticity tensor at
constant electric field, kij is the second-order dielectric
tensor at constant strain field, eijk is the third-order piezo-
electric coupling tensor. To avoid the difficulty associated
with heterogeneity, we can use the micromechanics ap-
proach to homogenize the material and obtain an effective
constitutive model, such that

�rij ¼ C�ijkl
��kl � e�ijkEk

Ti ¼ e�ijk��jk þ k�ijEj

ð4Þ

where ‘‘over-bar” means variables used in the macroscopic
analysis of homogenized materials, and superscripts ‘‘*”
denote the effective properties whose calculation are
determined by the micromechanics model one employs.

3. Theoretical formulation

VAMUCH formulation uses three coordinates systems:
two cartesian coordinates x ¼ ðx1; x2; x3Þ and y¼ðy1;y2;y3Þ,
and an integer-valued coordinate n ¼ ðn1;n2;n3Þ (see Fig.
1). We use xi as the global coordinates to describe the mac-
roscopic structure and yi parallel to xi as the local coordi-
nates to describe the UC (Here and throughout the paper,
Latin indices assume 1, 2, and 3 and repeated indices are
summed over their range except where explicitly indi-
cated). We choose the origin of the local coordinates yi to
be the geometric center of UC. For example, if the UC is a
cube with dimensions as di, then yi 2 ½� di

2 ;
di
2 �. To uniquely

locate a UC in the heterogeneous material we also intro-
duce integer coordinates ni. The integer coordinates are re-
lated to the global coordinates in such a way that ni ¼ xi=di

(no summation over i). It is emphasized although only
square array is sketched in Fig. 1, the present theory has
no such limitations.

As implied by Assumption 2, we can obtain the same
effective properties from an imaginary, unbounded, and
unloaded heterogeneous material with the same micro-
structure as the real, loaded, and bounded one. Hence we
could derive the micromechanics model from an imaginary,
unloaded, heterogeneous material which completely occu-
pies the three-dimensional (3D) space R and composes of
infinite many repeating UCs. For piezoelectric composites,
the total electric enthalpy is equal to the summation of
the electric enthalpy stored in all the UCs, which is

P ¼
X1

n¼�1

Z
X

2H dX ð5Þ

where 2H is twice the electric enthalpy, given by

2H ¼ �T D� ð6Þ

with

� ¼ b�11;2�12; �22;2�13;2�23; �33; E1; E2; E3cT ð7Þ
containing both the 3D strain field �ij and the 3D electric
field Ei, which are defined for a linear theory as

�ijðn; yÞ ¼ 1
2

ouiðn; yÞ
oyj

þ oujðn; yÞ
oyi

" #
ð8Þ

Eiðn; yÞ ¼ � o/ðn; yÞ
oyi

ð9Þ

and D is a 9� 9 matrix including the elastic, piezoelectric,
and dielectric properties and is expressed as

D ¼
C �e
�eT �k

� �
ð10Þ

In view of the fact that the infinite many UCs form a contin-
uous heterogenous material, we need to enforce the conti-
nuity of the displacement field ui and the electric potential
field / on the interface between adjacent UCs, which is

uiðn1;n2;n3; d1=2; y2; y3Þ ¼ uiðn1 þ 1;n2;n3;�d1=2; y2; y3Þ
uiðn1;n2;n3; y1;d2=2; y3Þ ¼ uiðn1;n2 þ 1;n3; y1;�d2=2; y3Þ
uiðn1;n2;n3; y1; y2; d3=2Þ ¼ uiðn1;n2;n3 þ 1; y1; y2;�d3=2Þ

ð11Þ
/ðn1;n2;n3; d1=2; y2; y3Þ ¼ /ðn1 þ 1;n2;n3;�d1=2; y2; y3Þ
/ðn1;n2;n3; y1;d2=2; y3Þ ¼ /ðn1;n2 þ 1;n3; y1;�d2=2; y3Þ
/ðn1;n2;n3; y1; y2;d3=2Þ ¼ /ðn1;n2;n3 þ 1; y1; y2;�d3=2Þ

ð12Þ

It is pointed out that the continuity of the traction and the
electric displacement is guaranteed by the variational prin-
ciple if the continuity of the displacement and the electric
potential is satisfied. Of course, if the displacement and the
electric potential are solved approximately using a numer-
ical technique such as the finite element method (FEM),
then the continuity of the traction and the electric dis-
placement will only be satisfied approximately although
the continuity of the displacement and the electric poten-
tial can be satisfied exactly through the same nodal values.

The exact solution of the present problem will minimize
the summation of electric enthalpy in Eq. (5) under the
constraints in Eqs. (1), (2), (11), and (12). Due to discrete
integer arguments, the problem is very difficult to solve.
To avoid the difficulty associated with discrete integer
arguments, we can reformulate the problem, including
Eqs. (5), (8), (9), (11) and (12), in terms of continuous func-
tions using the idea of quasicontinuum (Kunin, 1982). The
corresponding formulas are listed below

P ¼
Z
R

h�T D�idR ð13Þ

�ijðx; yÞ ¼ 1
2

ouiðx; yÞ
oyj

þ oujðx; yÞ
oyi

" #
� uðijjÞ ð14Þ

Eiðx; yÞ ¼ � o/ðx; yÞ
oyi

ð15Þ

and

uiðx1; x2; x3; d1=2; y2; y3Þ ¼ uiðx1 þ d1; x2; x3;�d1=2; y2; y3Þ
uiðx1; x2; x3; y1; d2=2; y3Þ ¼ uiðx1; x2 þ d2; x3; y1;�d2=2; y3Þ
uiðx1; x2; x3; y1; y2;d3=2Þ ¼ uiðx1; x2; x3 þ d3; y1; y2;�d3=2Þ

ð16Þ
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/ðx1; x2; x3; d1=2; y2; y3Þ ¼ /ðx1 þ d1; x2; x3;�d1=2; y2; y3Þ
/ðx1; x2; x3; y1;d2=2; y3Þ ¼ /ðx1; x2 þ d2; x3; y1;�d2=2; y3Þ
/ðx1; x2; x3; y1; y2;d3=2Þ ¼ /ðx1; x2; x3 þ d3; y1; y2;�d3=2Þ

ð17Þ
Introducing Lagrange multipliers, we can pose the varia-
tional statement of the micromechanical analysis of UC
as a stationary value problem of the following functional:

J ¼
Z
R

h�T D�i þ kiðhuii � viÞ þ kðh/i � wÞ
�

þ
Z

S1

ci1½uiðxj; d1=2; y2; y3Þ

� uiðxj þ dj1d1;�d1=2; y2; y3Þ�dS1

þ
Z

S2

ci2½uiðxj; y1;d2=2; y3Þ

� uiðxj þ dj2d2; y1;�d2=2; y3Þ�dS2

þ
Z

S3

ci3½uiðxj; y1; y2;d3=2Þ

� uiðxj þ dj3d3; y1; y2;�d3=2Þ�dS3

þ
Z

S1

b1½/ðxj; d1=2; y2; y3Þ

� /ðxj þ dj1d1;�d1=2; y2; y3Þ�dS1

þ
Z

S2

b2½/ðxj; y1;d2=2; y3Þ

� /ðxj þ dj2d2; y1;�d2=2; y3Þ�dS2

þ
Z

S3

b3½/ðxj; y1; y2; d3=2Þ

�/ðxj þ dj3d3; y1; y2;�d3=2Þ�dS3
�

dR ð18Þ

where ki, k, cij, and bi are Lagrange multipliers introduced
to enforce the constraints in Eqs. (1), (2), (16) and (17),
respectively, Si are the surfaces with ni ¼ 1, xj represents
the triplet of x1; x2; x3, and dij is the Kronecker delta. Fol-
lowing the general procedure of VAMUCH, we can obtain
the following change of variables for ui and /:

uiðx; yÞ ¼ viðxÞ þ yj
ovi

oxj
þ viðx; yÞ ð19Þ

/ðx; yÞ ¼ wðxÞ þ yi
ow
oxi
þ fðx; yÞ ð20Þ

where vi and f are the fluctuation functions, satisfying the
following constraints in view of Eqs. (1), (19), (2), (20)
when the origin of the local coordinate system is chosen
to be the center of UC:

hvii ¼ 0 ð21Þ
hfi ¼ 0 ð22Þ

Substituting Eqs. (19) and (20) into Eq. (18), we obtain a
stationary value problem defined over UC for vi and f
according to the variational asymptotic method (Berdi-
chevsky, 1977), such that

JX ¼ h�T D�i þ kihvii þ khfi þ
X3

j¼1

Z
Sj

cijðv
þj
i � v�j

i Þ dSj

þ
X3

j¼1

Z
Sj

bjðfþj � f�jÞ dSj ð23Þ
with

vþj
i ¼ vijyj¼dj=2;v

�j
i ¼ vijyj¼�dj=2 for j ¼ 1;2;3

fþj ¼ fjyj¼dj=2; f
�j ¼ fjyj¼�dj=2 for j ¼ 1;2;3

Matrix � can be expressed as

� ¼ ��þ �1 ð24Þ

with

�� ¼ ov1

ox1
;
ov1

ox2
þ ov2

ox1
;
ov2

ox2
;
ov1

ox3
þ ov3

ox1
;
ov2

ox3

�
þ ov3

ox2
;
ov3

ox3
;� ow

ox1
� ow

ox2
;� ow

ox3

�T

ð25Þ

which will be shown later to be the global variables con-
taining both the strain field and the electric field for the
material with homogenized effective material properties,
and

�1 ¼
ov1

oy1
;
ov1

oy2
þ ov2

oy1
;
ov2

oy2
;
ov1

oy3

�
þ ov3

oy1
;
ov2

oy3
þ ov3

oy2
;
ov3

oy3
;� of

oy1
;� of

oy2
;� of

oy3

�T

ð26Þ

The functional JX in Eq. (23) forms the backbone of the
present theory. This variational statement can be solved
analytically for very simple cases such as binary compos-
ites, however, for general cases we need to use numerical
techniques such as FEM to seek numerical solutions.

4. Finite element implementation

It is possible to formulate the FEM solution based on
Eq. (23), however, it is not the most convenient and effi-
cient way because Lagrange multipliers will increase the
number of unknowns. To this end, we can reformulate
the variational statement in Eq. (23) as the minimum value
of the following functional

PX ¼
1
X

Z
X
�T D� dX ð27Þ

under the following constraints

vþj
i ¼ v�j

i and fþj ¼ f�j for j ¼ 1;2;3 ð28Þ

It is noted here that the constraints in Eq. (28) are the com-
monly assumed periodic boundary conditions. However,
here both Eqs. (27) and (28) are direct consequence of
Eq. (23), that is the periodic boundary conditions are de-
rived from the theory instead of assumed a priori. The con-
straint in Eqs. (21) and (22) does not affect the minimum
values of PX but help uniquely determine vi and f. In prac-
tice, we can constrain the fluctuation function at an arbi-
trary node to be zero and later use this constraint to
recover the unique fluctuation function. It is fine to use
penalty function method to introduce the constraints in
Eq. (28). However, this method introduces additional
approximation and the robustness of the solution depends
on the choice of large penalty numbers. Instead, we make
the nodes on the positive boundary surface (i.e.,
yi ¼ di=2) slave to the nodes on the opposite negative
boundary surface (i.e., yi ¼ �di=2). By assembling all the



Table 1
Material properties of the composite constituents (PZT-7A, Epoxy, SiC,
LaRC-SI, and PVDF)

PZT-7A Epoxy SiC LaRC-SI PVDF

C11 131.39 8.0 483.7 8.1 1.2
C12 87.712 4.4 99.1 5.4 1.0
C23 83.237 4.4 99.1 5.4 1.9
C22 154.837 8.0 483.7 8.1 3.8
C44 35.8 1.8 192.3 1.4 0.7
C55 25.696 1.8 192.3 1.4 0.9
C66 25.696 1.8 192.3 1.4 0.9
e11 9.52183 – – – �0.027
e21 �2.12058 – – – 0.024
e31 �2.12058 – – – 0.001
e51 9.34959 – – – 0.000
k11 2.079 0.0372 0.085 0.025 0.067
k22 4.065 0.0372 0.085 0.025 0.065
k33 4.065 0.0372 0.085 0.025 0.082
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independent active degrees of freedom (DOFs), we can
implicitly and exactly incorporate the constraints in Eq.
(28).

Introduce the following matrix notation

�1 ¼¼

o
oy1

0 0 0
o
@y2

o
oy1

0 0

0 o
oy2

0 0
o

oy3
0 o

oy1
0

0 o
oy3

o
oy2

0

0 0 o
oy3

0

0 0 0 � o
oy1

0 0 0 � o
oy2

0 0 0 � o
oy3

266666666666666666664

377777777777777777775

v1

v2

v3

f

26664
37775 � Chv ð29Þ

where Ch is an operator matrix. If we discretize v using the
finite elements as

vðxi; yiÞ ¼ SðyiÞXðxiÞ ð30Þ

where S representing the shape functions and X a column
matrix of the nodal values of both the mechanical and elec-
tric fluctuation functions. Substituting Eqs. (29) and (30)
into Eq. (27), we obtain a discretized version of the func-
tional as

PX ¼
1
X
ðXT EXþ 2XT Dh���þ ��T D����Þ ð31Þ

where

E ¼
Z

X
ðChSÞT DðChSÞ dX

Dh� ¼
Z

X
ðChSÞT D dX

D�� ¼
Z

X
D dX ð32Þ

Minimizing PX in Eq. (31), we obtain the following linear
system

EX ¼ �Dh��� ð33Þ
It is clear from Eq. (33) that the fluctuation function X is
linearly proportional to ��, which means the solution can
be written symbolically as

X ¼ X0�� ð34Þ

Substituting Eq. (34) into Eq. (31), we can calculate the
electric enthalpy of the UC as

PX ¼
1
X

��T XT
0Dh� þ D��

� 	
�� � ��T D�� ð35Þ

It can be seen that D in Eq. (35) is the effective piezoelectric
material properties which can be expressed using a 9� 9
matrix as

D ¼
C� �e�

�e�T �k�

� �
ð36Þ

and �� is a column matrix containing both the global strains
and global electric fields.

If the local fields within UC are of interest, one can
recover those fields, such as local displacements, electric
potential, stresses, and electric displacements, in terms of
the macroscopic behavior including the global displace-
ments vi, the global electric potential w, the global strain
and electric field ��, and the fluctuation function v. First,
we need to uniquely determine the fluctuation functions.
Considering the fact that we fixed an arbitrary node and
made nodes on the positive boundary surfaces slave to
the corresponding negative boundary surfaces, we need
to construct a new array fX0 from X0 by assigning the val-
ues for slave nodes according to the corresponding active
nodes and assign zero to the fixed node. Obviously, fX0 still
yield the minimum value of PX in Eq. (27) under con-
straints in Eq. (28). However, fX0 may not satisfy Eqs.
(21) and (22). The real solution, denoted as X0 can be
found trivially by adding a constant corresponding to each
DOF to each node so that Eqs. (21) and (22) are satisfied.

After having determined the fluctuation functions un-
iquely, we can recover the local displacements and electric
potential using Eqs. (19) and (20) as

u1

u2

u3

/

8>>><>>>:
9>>>=>>>; ¼

v1

v2

v3

w

8>>><>>>:
9>>>=>>>;þ

ov1
ox1

ov1
ox2

ov1
ox3

ov2
ox1

ov2
ox2

ov2
ox3

ov3
ox1

ov3
ox2

ov3
ox3

ow
ox1

ow
ox2

ow
ox3

2666664

3777775
y1

y2

y3

8><>:
9>=>;þ SX ð37Þ

Here S is different from S due to the recovery of slave nodes
and the constrained node. The local strain field and electric
field can be recovered using Eqs. (14), (15), (19), (20) and
(29) as

� ¼ ��þ ChSX ð38Þ

Finally, the local stress and electric displacement field can
be recovered straightforwardly using the 3D constitutive
relations for the constituent material as

r ¼ D� ð39Þ

with r as a column matrix containing both 3D stresses and
electric displacements such that

r ¼ br11;r12;r22;r13;r23;r33;�T1;�T2;�T3cT ð40Þ

We have implemented this formulation in the computer
program VAMUCH. To demonstrate the application, accu-
racy, and efficiency of this theory and the companion code,
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we will analyze several examples using VAMUCH in the
next section.

5. Numerical examples

VAMUCH provides a unified analysis for general 1D,
2D, or 3D UCs. First, the same code VAMUCH can be
used to homogenize binary composites (modeled using
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1D UCs), fiber reinforced composites (modeled using
2D UCs), and particle reinforced composites (mod-
eled using 3D UCs). Second, VAMUCH can reproduce
the results for lower-dimensional UCs using
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In this section, several examples will be used to demon-
strate the accuracy of VAMUCH for predicting the effective
properties and calculating the local stress and electric dis-
placement fields within UC.

5.1. Predict effective properties of composites

At first the piezoelectric composite considered is com-
posed of piezoceramic (PZT) fibers embedded in soft non-
piezoelectric materials (epoxy) in which the fibers are of
circular shape. The epoxy matrix is isotropic while the fi-
bers are transversely isotropic. The material properties of
both constituents are taken from Pettermann and Suresh
(2000) and shown in Table 1. The units of the elastic con-
stants, piezoelectric constants, and dielectric constants
are given in GPa, Cm�2, and nC V�1 m�1, respectively. For
transversely isotropic piezoelectric materials, there are
11 independent coefficients remained in the total material
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matrix and the matrix form of constitutive equation can be
written as
r11

r12

r22

r13

r23

r33

�T1

�T2

�T3

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;

¼

C11 0 C12 0 0 C12 �e11 0 0
0 C66 0 0 0 0 0 �e51 0
C12 0 C22 0 0 C23 �e21 0 0
0 0 0 C55 0 0 0 0 �e51

0 0 0 0 C44 0 0 0 0
C12 0 C23 0 0 C22 �e21 0 0
�e11 0 �e21 0 0 �e21 �k11 0 0
0 �e51 0 0 0 0 0 �k22 0
0 0 0 �e51 0 0 0 0 �k22

266666666666666664

377777777777777775

�11

�12

�22

�13

�23

�33

E1

E2

E3

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;

ð41Þ
All effective coefficients were calculated for the volume
fraction of fibers in a range between 0.1 and 0.7 using VA-
MUCH and ANSYS, a commercial finite element package
capable of multiphysics simulation. For ANSYS calculation,
we need to use a three-dimensional unit cell, which is
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Table 2
Comparison of the effective properties for 60% volume fraction of fibers

VAMUCH Berger

CeffD
11 (GPa) 86.982 86.982

CeffD
12 (GPa) 10.630 10.631

CeffD
22 (GPa) 25.322 25.322

CeffD
23 (GPa) 7.931 7.930

CeffD
44 (GPa) 4.39 4.39

CeffD
55 (GPa) 6.481 6.477

beff
11 (GVm/C) 0.780 0.780

beff
22 (GVm/C) 6.614 6.60

heff
11 (GV/m) 5.039 5.039

heff
21 (GV/m) �0.1524 �0.1524

heff
51 (GV/m) 0.3068 0.3063
meshed with 8-noded piezoelectric brick elements (Solid5)
with area element size 0.05. However, for VAMUCH calcu-
lation, we only need a two-dimensional unit cell, which is
meshed with 4-noded quadrilateral elements with the
same element size. Both meshes provide converged results
for the effective properties. The ANSYS FEM model was set
up following the procedure described in Berger et al.
0 50 60 70
n of fibers (%)

ctric constants.

Pettermann BL HS

86.98 76.1/87.0 79.0/87.8
10.64 8.89/12.3 6.12/16.5
25.42 25.2/25.5 24.9/28.7

7.86 7.72/8.15 5.00/12.0
4.41 4.39/4.41 4.37/4.92
6.51 6.45/6.52 6.40/7.67
0.780 0.730/0.844 0.742/0.951
6.572 6.57/6.66 2.54/6.73
5.037 3.91/5.42 3.63/5.85
�0.153 �0.337/0.024 �1.03/0.719

0.311 0.229/0.384 �1.92/2.67



Fig. 7. Piezoelectric composite with a complex microstructure.

Fig. 8. Contour plot of r22 (Pa) within UC.

Fig. 9. Contour plot of r23 (Pa) within UC.

820 T. Tang, W. Yu / Mechanics of Materials 40 (2008) 812–824
(2006). The results of different approaches were evaluated
for composites with periodic square (SQU) or periodic hex-
agonal (HEX) piezoelectric fiber arrangements. The effec-
tive coefficients of composites are shown in Figs. 2–6. We
found out that the predictions of all effective coefficients
from VAMUCH have excellent agreement with those using
ANSYS following Berger et al. (2006).

To provide a more extensive validation for VAMUCH, we
considered a composite body reinforced by parallel square
fibers with a square arrangement, which is the same exam-
ple as in Bisegna and Luciano (1997). The matrix and the
fibers are isotropic epoxy polymer and piezoelectric cera-
mic PZT-7A, respectively. The volume fraction of fibers is
60%. For ANSYS calculation, we use 8-noded piezoelectric
brick elements (Solid5) with area element size 0.05 and
for VAMUCH calculation, we use 8-noded quadrilateral ele-
ment with the same element size. Mesh refinements are
also applied at the corner for convergence of the results.
To facilitate the comparison, the effective coefficients cal-
culated by VAMUCH are transformed according to the fol-
lowing formulas as listed in Berger et al. (2006):

beff
11 ¼ 1=�eff

11 beff
22 ¼ 1=�eff

22

CeffD
11 ¼ Ceff

11 þ ðeeff
11 Þ

2beff
11 CeffD

12 ¼ Ceff
12 þ eeff

21 eeff
11 beff

11

CeffD
22 ¼ Ceff

22 þ ðeeff
21 Þ

2beff
11 CeffD

23 ¼ Ceff
23 þ ðeeff

21 Þ
2beff

11

CeffD
44 ¼ Ceff

44 CeffD
55 ¼ Ceff

55 þ ðeeff
51 Þ

2beff
11

heffD
11 ¼ eeff

11 beff
11 heffD

21 ¼ eeff
21 beff

11

heffD
51 ¼ eeff

51 beff
22 ð42Þ

In Table 2, VAMUCH results are compared with ANSYS fol-
lowing the micromechanical analysis of Berger et al. (2006)
Table 3
Effective coefficients of piezoelectric composite with a complex microstructure

Ceff
11 (GPa) Ceff

12 (GPa) Ceff
23 (GPa)

VAMUCH 75.51 3.33 5.173
ANSYS 75.51 3.33 5.167

eeff
11 (C/m2) eeff

21 (C/m2) eeff
51 (C/m2)

VAMUCH 1.7387 0.009275 0.000735
ANSYS 1.7387 0.009291 0.000753
(denoted as Berger), the results in Pettermann and Suresh
(2000) (denoted as Pettermann), Bisegna–Luciano bounds
in Bisegna and Luciano (1997) (denoted as BL), and Ha-
shin–Shtrikman bounds for piezoelectric materials derived
in Bisegna and Luciano (1997) (denoted as HS). From Table
2 one can observe that the predictions of VAMUCH agree
very well with those of FEM-based micromechanical anal-
yses (Pettermann and Suresh, 2000; Berger et al., 2006)
and nicely fall in between the tightest BL bounds.

To further demonstrate the reliability and accuracy of
present model for more realistic heterogeneous materials,
we choose a more complex microstructure as shown in
Fig. 7. There are four different materials within one UC.
The reinforcements are PZT-7A square fiber and a thin-wall
circular SiC frame around the square fiber. The matrix
Ceff
22 (GPa) Ceff

44 (GPa) Ceff
55 (GPa)

10.916 1.871 3.86
10.920 1.871 3.82
keff

11 (nC/Vm) keff
22 (nC/Vm) keff

33 (nC/Vm)
0.3827 0.06011 0.06555
0.3827 0.06013 0.06558
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Fig. 12. Contour plot of electric flux density T3 (nC/Vm) in a piezoelectric
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between reinforcements is LaRC-SI, while the matrix out-
side thin-wall frame is PVDF. The material properties of
the four constituents are shown in Table 1. There are no
analytical solutions for this kind of microstructure. Here,
we use ANSYS to calculate all the effective properties fol-
lowing the approach described in Berger et al. (2006).
Table 3 lists the effective properties predicted by VAMUCH
and ANSYS. Both methods produce almost identical results.

5.2. Predict local fields

VAMUCH can accurately recover the local stresses and
electric displacement distribution within the UC. In this
study, we will use the direct multiphysics simulation in
ANSYS as benchmark to verify the prediction of VAMUCH.
The first example is PZT-7A/epoxy fiber reinforced compos-
ites with fiber volume fraction as 0.2. The boundary condi-
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Fig. 11. Comparison of normal stress r22 distribution along y2 ¼ 0.

composite with complex microstructure.
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tions applied to the UC are �22 ¼ 1:0% and E2 ¼ 100 V=m and
all other mechanical strains and gradients of electric potential
are set to zero. Due to the difference of material properties of
two constituents, the distribution of local stresses is not uni-
form within the UC. Figs. 8 and 9 show the contour plots of the
distributions of r22 and r23. All sudden changes of local stres-
ses at the interface between fibers and matrix are well cap-
tured by VAMUCH. For quantitative comparison, we also
plot r22 predicted by VAMUCH and the direct multiphysics
simulation of ANSYS along the lines y3 ¼ 0 and y2 ¼ 0 in Figs.
10 and 11, respectively. It is obvious that the predictions of
VAMUCH have excellent agreement with those of ANSYS.
Fig. 13. Contour plot of electric flux density T2 (nC/Vm) in a
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Fig. 14. Electric flux density T3 distribution along y3 ¼ 0 in a
The second example is the composite with complex
microstructure as shown in Fig. 7. The mechanical strains
on all surfaces of UC are constrained. The contours of local
electric displacement distribution T3 and T2 resulting from
100 V/m in the y3 direction predicted by VAMUCH is
shown in Figs. 12 and 13. For a quantitative comparison,
we also plot the local electric displacement distribution
T3 along y3 ¼ 0 predicted by VAMUCH and ANSYS as
shown in Fig. 14. It can be observed that there is excellent
agreement between these two sets of results.

In the aforementioned two examples, the contour plots
of ANSYS are not shown because they are indistinguishable
piezoelectric composite with complex microstructure.

0.1 0.3 0.5

NSYS
AMUCH

piezoelectric composite with complex microstructure.
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from those of VAMUCH. It is emphasized here that ANSYS
results are obtained through the direct multiphysics simu-
lation of the unit cell using piezoelectric elements under
specified loading without using a micromechanics ap-
proach to obtain the effective properties first, while VA-
MUCH calculates the effective material properties first
and use these effective properties to carry out a macro-
scopic analysis of the homogenized microstructure to ob-
tain the global fields and then recover the local fields
within the original heterogeneous microstructure.

6. Conclusion

The variational asymptotic method for unit cell homog-
enization (VAMUCH) has been applied to construct a
micromechanics model for predicting the effective proper-
ties and the local fields of piezoelectric composites. In
comparison to existing models, the present model has
the following unique features:

(1) It adopts the variational asymptotic method as its
mathematical foundation. It invokes only essential
assumptions inherent in the concept of micro-
mechanics.

(2) It has an inherent variational nature and its numer-
ical implementation is shown to be straightforward.

(3) It handles 1D/2D/3D unit cells uniformly. The
dimensionality of the problem is determined by
the periodicity of the unit cell.

The present theory is implemented in the computer
program, VAMUCH. Numerous examples have clearly
demonstrated its application and accuracy as a general-
purpose micromechanical analysis tool. Although for
the examples we have studied, VAMUCH results are almost
identical to the results obtained by some FEM-based
micromechanics analysis (Pettermann and Suresh,
2000; Berger et al., 2006), VAMUCH has the following
advantages:

(1) VAMUCH can obtain the complete set of material
properties within one analysis, which is more effi-
cient than those approaches requiring multiple runs
under different boundary and load conditions. Fur-
thermore, it is not a trivial issue to apply the right
boundary conditions to obtain a correct FEM-based
micromechanical analysis.

(2) VAMUCH calculates effective properties and local
fields directly with the same accuracy as the fluctu-
ation functions. No postprocessing calculations
which introduces more approximations, such as
averaging stress and electric displacement field, are
needed, which are indispensable for FEM-based
micromechanical analysis.

(3) VAMUCH can deal with general anisotropy for effec-
tive materials which means VAMUCH can calculate
21 constants for the effective elastic constants, 18
constants for the effective piezoelectric constants,
6 for the effective dielectric constants, while FEM-
based micromechanical analyses have difficulties
to predict effective material having constants more
than orthotropic materials.
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