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Introduction

This tutorial demonstrates a method of calculating the effective 
stress relaxation stiffness of linear viscoelastic composites 
using ABAQUS.

A fiber reinforced polymer matrix composite is used as an 
example in which the polymer is assumed to be linear 
viscoelastic behavior while the fiber is linear elastic material.

The present methodology can be readily extended to other 
types of composites such as particle reinforced composites, 
chopped fiber reinforced composites, etc.



Periodic boundary conditions

The periodic boundary conditions
described in Eq. (4) are implemented
into a python script.

The periodic boundary conditions
described in Eq. (4) were applied to the
unit cell by coupling opposite nodes on
corresponding opposite boundary
surfaces. In actual manipulation, three
reference points are first created and
their displacements are assigned as
 𝜀𝑖𝑗∆𝑥𝑗.



Unit cell of a fiber reinforced composite

 In this study, the fiber is assumed to be of circular 

shape and in square array.

The unit cell model is meshed by C3D8R 

elements.

Sweep mesh technique was used in order to 

obtain periodic mesh on opposite boundary 

surfaces, which means that the meshes on 

opposite boundary surfaces are identical.
 In the present study, the fiber direction is along -1. 

The edge length of the unit cell along 1, 2, and 3
direction are respectively ∆𝑥1 = 0.1 mm and 

∆𝑥2 = ∆𝑥3 = 1mm.𝐴1 = 1𝑚𝑚
2

𝐴2 = 0.1 𝑚𝑚
2

𝐴3 = 0.1 𝑚𝑚
2



Material properties of the constituents
In the present example, the ABAQUS unit cell model was used to calculate the effective 

stress relaxation stiffness and creep compliance of the glass fiber reinforced polymer 

matrix composites.

 The glass fibers are isotropic and linear elastic materials with Young’s modulus and 

Poisson’s ratio being 80,000 MPa and 0.3 respectively. The volume fraction of the fibers 

is vof = 20%.

 The elastic relaxation modulus of the isotropic and linear viscoelastic polymer materials 

can be expressed using Prony series in the following way:

𝐸 𝑡 = 𝐸0 1 − 

𝑘=1

𝑛

𝑔𝑘 1 − 𝑒
−𝑡/𝜏𝑘 = 𝐸∞ + 

𝑘=1

𝑛

𝐸𝑖𝑒
−𝑡/𝜏𝑘

where 𝐸0 is the instantaneous Young’s modulus and also given by

𝐸0 = 𝐸∞ +  𝑘=1
𝑛 𝐸𝑖 = 𝐸∞ +  𝑘=1

𝑛 𝐸0𝑔𝑘 with 𝐸∞ being the long-term Young’s modulus; 

𝜏𝑘 is the time  relaxation material parameter.



Material properties of the constituents (cont.)

Table 1. Relaxation times and Prony
coefficients for PMT-F4 epoxy.*

* Kawai Kwok and Sergio Pellegrino, “Micromechanics 

models for viscoelastic plain-weave composite tape 
springs”, AIAA Journal, Vol. 55, No. 1, January 2017.

In the present example, the material properties of the polymer 

matrix is shown in left table. The Poisson’s ratio of the 

polymer is 0.33.

𝐸0 = 𝐸∞ + 

𝑖=1

7

𝐸𝑖 = 4973.8 Mpa

𝑔1 =
𝐸1
𝐸0
= 0.045056094; 𝑔2 =

𝐸2
𝐸0
= 0.090634927

𝑔3 =
𝐸3
𝐸0
= 0.081647835; 𝑔4 =

𝐸4
𝐸0
= 0.0789553717

𝑔5 =
𝐸5
𝐸0
= 0.162933773; 𝑔6 =

𝐸6
𝐸0
= 0.040954602

𝑔7 =
𝐸7
𝐸0
= 0.045056094

where 𝑔𝑖 is the dimensionless Young’s modulus.



Material inputs of the polymer in ABAQUS unit 
cell model

Note that 𝑔𝑖 = 𝑘𝑖 with 𝑘𝑖 being the dimensionless bulk modulus.



Effective stress relaxation stiffness 

The effective properties of fiber reinforced composites with the 
fibers in square array possess square symmetry. The effective 
stress relaxation stiffness matrix can be expressed as:

Where “cst” means constant values that do not vary with time but may 
change with position.



Load cases
In order to calculate the full set of stress relaxation stiffness of the linear viscoelastic 

composites, four load cases are applied:

 Load case 1: The constant macroscopic strain  𝜀11 = 0.1 along 1 direction was applied by 

prescribing the 1 direction displacement of Reference point-1 as 𝑢1 = 0.01. All other 

mechanical strains are set to zero.

 Load case 2: The constant macroscopic strain  𝜀22 = 0.1 along 2 direction was applied by 

prescribing the 2 direction displacement of Reference point-2 as 𝑢2 = 0.1. All other 

mechanical strains are set to zero.

 Load case 3: The constant macroscopic transverse shear strain  𝛾23 = 0.1
was applied by prescribing the 3 direction displacement of Reference 

point-2 as 𝑢3 = 0.1 and 2 direction displacement of Reference point-3 as 

𝑢2 = 0.1. All other mechanical strains are set to zero.

 Load case 4: The constant macroscopic longitudinal shear strain  𝛾12 = 0.1
was applied by prescribing the 2 direction displacement of Reference 

point-1 as 𝑢2 = 0.01 and 1 direction displacement of Reference point-2 as 

𝑢1 = 0.1. All other mechanical strains are set to zero.



Stress relaxation loading
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The constant strain was applied since 𝑡 = 0.



Calculation of 𝐶11
∗ 𝑡 and 𝐶12

∗ 𝑡
The calculation of 𝐶11

∗ 𝑡 and 𝐶12
∗ 𝑡 are calculated under Load case 1.

The 𝐶11
∗ 𝑡 was calculated as 
𝐶11
∗ 𝑡 =  𝑅𝐹1 𝑡 𝐴1  𝜀11

where 𝑅𝐹1 𝑡 is the variation of 1 component 
of the reaction force of Reference point-1 

The 𝐶12
∗ 𝑡 was calculated as 
𝐶12
∗ 𝑡 =  𝑅𝐹2 𝑡 𝐴2  𝜀11

where 𝑅𝐹2 𝑡 is the variation of 2 component 
of the reaction force of Reference point-2 

Contour plot of von 
Mises stress of unit cell 
under Load case 1.



Calculation of 𝐶22
∗ 𝑡 and 𝐶23

∗ 𝑡

The calculation of 𝐶22
∗ 𝑡 and 𝐶23

∗ 𝑡 are calculated under Load case 2.
Contour plot of von 
Mises stress of unit cell 
under Load case 2.

The 𝐶22
∗ 𝑡 was calculated as 
𝐶22
∗ 𝑡 =  𝑅𝐹2 𝑡 𝐴2  𝜀22

where 𝑅𝐹2 𝑡 is the variation of 2 component 
of the reaction force of Reference point-2. 

The 𝐶23
∗ 𝑡 was calculated as 
𝐶23
∗ 𝑡 =  𝑅𝐹3 𝑡 𝐴3  𝜀22

where 𝑅𝐹3 𝑡 is the variation of 3 component 
of the reaction force of Reference point-3. 



Calculation of 𝐶44
∗ 𝑡

The calculation of 𝐶44
∗ 𝑡 is calculated under Load case 3.

Contour plot of von 
Mises stress of unit cell 
under Load case 3.

The 𝐶44
∗ 𝑡 was calculated as 

𝐶44
∗ 𝑡 =  𝑅𝐹2 𝑡 𝐴2  𝜀23

where 𝑅𝐹2 𝑡 is the variation of 2 component of the 

reaction force of Reference point-3.  𝜀23 =
1

2
 𝛾23.



Calculation of 𝐶55
∗ 𝑡

The calculation of 𝐶55
∗ 𝑡 is calculated under Load case 4.

Contour plot of von 
Mises stress of unit cell 
under Load case 4.

The 𝐶55
∗ 𝑡 was calculated as 

𝐶55
∗ 𝑡 =  𝑅𝐹1 𝑡 𝐴2  𝜀12

where 𝑅𝐹1 𝑡 is the variation of 1 component of the 

reaction force of Reference point-2.  𝜀12 =
1

2
 𝛾12.



Comparison with SwiftComp
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Comparison with SwiftComp

𝐶12
∗ 𝑡 𝐶23

∗ 𝑡
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Comparison with SwiftComp
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