Calculation of stress relaxation stiffness of linear viscoelastic composites using ABAQUS

Tian Tang
tang298@purdue.edu
Composites Manufacturing \& Simulation Center
Purdue University

Introduction

$>$ This tutorial demonstrates a method of calculating the effective stress relaxation stiffness of linear viscoelastic composites using ABAQUS.
$>$ A fiber reinforced polymer matrix composite is used as an example in which the polymer is assumed to be linear viscoelastic behavior while the fiber is linear elastic material.
$>$ The present methodology can be readily extended to other types of composites such as particle reinforced composites, chopped fiber reinforced composites, etc.

Periodic boundary conditions

The composites can be idealized as assembly of many periodic unit cells to which the periodic boundary conditions are consequently applied, which means that the deformation mode in each unit cell are identical and there is no gap or overlap between the adjacent unit cells. The periodic boundary conditions are represented as

$$
\begin{equation*}
u_{i}=\bar{\varepsilon}_{i j} x_{j}+v_{i} \tag{1}
\end{equation*}
$$

where $\bar{\varepsilon}_{i j}$ is the average strain; v_{i} is the periodic part of the displacement components also called local fluctuation on the boundary surfaces. The displacements on a pair of opposite boundary surfaces are given by

$$
\begin{align*}
& u_{i}^{k+}=\bar{\varepsilon}_{i j} x_{j}^{k+}+v_{i}^{k+} \tag{2}\\
& u_{i}^{k-}=\bar{\varepsilon}_{i j} x_{j}^{k-}+v_{i}^{k-} \tag{3}
\end{align*}
$$

where " $k+$ " denotes along the positive x_{j} direction while " k-" means along the negative x_{j}
$>$ The periodic boundary conditions described in Eq. (4) are implemented into a python script.
$>$ The periodic boundary conditions described in Eq. (4) were applied to the unit cell by coupling opposite nodes on corresponding opposite boundary surfaces. In actual manipulation, three reference points are first created and their displacements are assigned as $\bar{\varepsilon}_{i j} \Delta x_{j}$.
direction. Since the periodic parts v_{i}^{k+} and v_{i}^{k-} are identical on the two opposite boundary surfaces of a periodic unit cell, the difference of Eq. (2) and (3) is obtained as

$$
\begin{equation*}
u_{i}^{k+}-u_{i}^{k-}=\bar{\varepsilon}_{i j}\left(x_{j}^{k+}-x_{j}^{k-}\right)=\bar{\varepsilon}_{i j} \Delta x_{j} \tag{4}
\end{equation*}
$$

where Δx_{j} is actually the edge length of the unit cell.

Unit cell of a fiber reinforced composite

Material properties of the constituents

In the present example, the ABAQUS unit cell model was used to calculate the effective stress relaxation stiffness and creep compliance of the glass fiber reinforced polymer matrix composites.
> The glass fibers are isotropic and linear elastic materials with Young's modulus and Poisson's ratio being $80,000 \mathrm{MPa}$ and 0.3 respectively. The volume fraction of the fibers is vof $=20 \%$.
$>$ The elastic relaxation modulus of the isotropic and linear viscoelastic polymer materials can be expressed using Prony series in the following way:

$$
E(t)=E_{0}\left(1-\sum_{k=1}^{n} g_{k}\left(1-e^{-t / \tau_{k}}\right)\right)=E_{\infty}+\sum_{k=1}^{n} E_{i} e^{-t / \tau_{k}}
$$

where E_{0} is the instantaneous Young's modulus and also given by

$$
E_{0}=E_{\infty}+\sum_{k=1}^{n} E_{i}=E_{\infty}+\sum_{k=1}^{n} E_{0} g_{k} \text { with } E_{\infty} \text { being the long-term Young's modulus; }
$$

τ_{k} is the time relaxation material parameter.

Material properties of the constituents (cont.)

Table 1. Relaxation times and Prony coefficients for PMT-F4 epoxy.*

i	E_{i}, MPa	$\rho_{i}, \mathrm{~s}$
∞	1000	--
1	224.1	$1.0 \mathrm{e}+3$
2	450.8	$1.0 \mathrm{e}+5$
3	406.1	$1.0 \mathrm{e}+6$
4	392.7	$1.0 \mathrm{e}+7$
5	810.4	$1.0 \mathrm{e}+8$
6	203.7	$1.0 \mathrm{e}+9$
7	1486.0	$1.0 \mathrm{e}+10$

* Kawai Kwok and Sergio Pellegrino, "Micromechanics models for viscoelastic plain-weave composite tape springs", AIAA Journal, Vol. 55, No. 1, January 2017.

In the present example, the material properties of the polymer matrix is shown in left table. The Poisson's ratio of the polymer is 0.33 .

$$
\begin{aligned}
& E_{0}=E_{\infty}+\sum_{i=1}^{7} E_{i}=4973.8 \mathrm{Mpa} \\
& g_{1}=\frac{E_{1}}{E_{0}}=0.045056094 ; g_{2}=\frac{E_{2}}{E_{0}}=0.090634927 \\
& g_{3}=\frac{E_{3}}{E_{0}}=0.081647835 ; g_{4}=\frac{E_{4}}{E_{0}}=0.0789553717 \\
& g_{5}=\frac{E_{5}}{E_{0}}=0.162933773 ; g_{6}=\frac{E_{6}}{E_{0}}=0.040954602 \\
& g_{7}=\frac{E_{7}}{E_{0}}=0.045056094 \\
& \text { where } g_{i} \text { is the dimensionless Young's modulus. }
\end{aligned}
$$

Material inputs of the polymer in ABAQUS unit cell model

Note that $g_{i}=k_{i}$ with k_{i} being the dimensionless bulk modulus.

Effective stress relaxation stiffness

$>$ The effective properties of fiber reinforced composites with the fibers in square array possess square symmetry. The effective stress relaxation stiffness matrix can be expressed as:

$$
\left\{\begin{array}{l}
\bar{\sigma}_{11}(t) \\
\bar{\sigma}_{22}(t) \\
\bar{\sigma}_{33}(t) \\
\bar{\sigma}_{23}(t) \\
\bar{\sigma}_{12}(t) \\
\sigma_{13}(t)
\end{array}\right\}=\left[\begin{array}{cccccc}
C_{11}^{*}(t) & C_{12}^{*}(t) & C_{12}^{*}(t) & 0 & 0 & 0 \\
C_{12}^{*}(t) & C_{22}^{*}(t) & C_{23}^{*} & 0 & 0 & 0 \\
C_{12}^{*}(t) & C_{23}^{*}(t) & C_{22}^{*} & 0 & 0 & 0 \\
0 & 0 & 0 & C_{44}^{*}(t) & 0 & 0 \\
0 & 0 & 0 & 0 & C_{55}^{*}(t) & 0 \\
0 & 0 & 0 & 0 & 0 & C_{55}^{*}(t)
\end{array}\right]\left\{\begin{array}{c}
\bar{\varepsilon}_{11}^{\text {sst }} \\
\bar{\varepsilon}_{22}^{\text {st }} \\
\bar{\varepsilon}_{33}^{\text {st }} \\
\bar{\gamma}_{23}^{\text {st }} \\
\bar{\gamma}_{12}^{\text {st }} \\
\bar{\gamma}_{13}^{\text {st }}
\end{array}\right\}
$$

Where "cst" means constant values that do not vary with time but may change with position.

Load cases

In order to calculate the full set of stress relaxation stiffness of the linear viscoelastic composites, four load cases are applied:
> Load case 1: The constant macroscopic strain $\bar{\varepsilon}_{11}=0.1$ along 1 direction was applied by prescribing the 1 direction displacement of Reference point- 1 as $u_{1}=0.01$. All other mechanical strains are set to zero.
$>$ Load case 2: The constant macroscopic strain $\bar{\varepsilon}_{22}=0.1$ along 2 direction was applied by prescribing the 2 direction displacement of Reference point- 2 as $u_{2}=0.1$. All other mechanical strains are set to zero.

$>$ Load case 3: The constant macroscopic transverse shear strain $\bar{\gamma}_{23}=0.1$ was applied by prescribing the 3 direction displacement of Reference point-2 as $u_{3}=0.1$ and 2 direction displacement of Reference point-3 as $u_{2}=0.1$. All other mechanical strains are set to zero.
$>$ Load case 4: The constant macroscopic longitudinal shear strain $\bar{\gamma}_{12}=0.1$ was applied by prescribing the 2 direction displacement of Reference point- 1 as $u_{2}=0.01$ and 1 direction displacement of Reference point- 2 as $u_{1}=0.1$. All other mechanical strains are set to zero.

Stress relaxation loading

The constant strain was applied since $t=0$.

Calculation of $C_{11}^{*}(t)$ and $C_{12}^{*}(t)$

The calculation of $C_{11}^{*}(t)$ and $C_{12}^{*}(t)$ are calculated under Load case 1.

Calculation of $C_{22}^{*}(t)$ and $C_{23}^{*}(t)$

The calculation of $C_{22}^{*}(t)$ and $C_{23}^{*}(t)$ are calculated under Load case 2.

The $C_{22}^{*}(t)$ was calculated as

$$
C_{22}^{*}(t)=R F_{2}(t) /\left(A_{2} \bar{\varepsilon}_{22}\right)
$$

where $R F_{2}(t)$ is the variation of 2 component of the reaction force of Reference point-2.

Contour plot of von Mises stress of unit cell under Load case 2.

The $C_{23}^{*}(t)$ was calculated as

$$
C_{23}^{*}(t)=R F_{3}(t) /\left(A_{3} \bar{\varepsilon}_{22}\right)
$$

where $R F_{3}(t)$ is the variation of 3 component of the reaction force of Reference point-3.

Calculation of $C_{44}^{*}(t)$

The calculation of $C_{44}^{*}(t)$ is calculated under Load case 3.
The $C_{44}^{*}(t)$ was calculated as

$$
C_{44}^{*}(t)=R F_{2}(t) /\left(A_{2} \bar{\varepsilon}_{23}\right)
$$

where $R F_{2}(t)$ is the variation of 2 component of the reaction force of Reference point-3. $\bar{\varepsilon}_{23}=\frac{1}{2} \bar{\gamma}_{23}$.

Contour plot of von Mises stress of unit cell under Load case 3.

Calculation of $C_{55}^{*}(t)$

The calculation of $C_{55}^{*}(t)$ is calculated under Load case 4.
The $C_{55}^{*}(t)$ was calculated as

$$
C_{55}^{*}(t)=R F_{1}(t) /\left(A_{2} \bar{\varepsilon}_{12}\right)
$$

where $R F_{1}(t)$ is the variation of 1 component of the reaction force of Reference point-2. $\bar{\varepsilon}_{12}=\frac{1}{2} \bar{\gamma}_{12}$. ses stress of unit cell der Load case 4.

Comparison with SwiftComp

Comparison with SwiftComp

Comparison with SwiftComp

