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1 Introduction

SwiftCompTM represents a general-purpose approach for computing effective properties (aka consti-
tutive modeling) of composite materials and structures. Here composite materials and structures re-
fer to those materials and structures featuring anisotropy and heterogeneity, not just the traditional
fiber reinforced polymers or unidirectional laminates. SwiftCompTM can be used independently for
virtual testing composite materials and structures or as a plugin to power conventional finite ele-
ment analysis (FEA) codes with efficient high-fidelity multiscale modeling for such materials and
structures. SwiftCompTM implements Mechanics of Structure Genome (MSG), a unique multiscale
modeling approach based on the concept of Structure Gene (SG), to capture both anisotropy and
heterogeneity of composites at the microscopic scale or other scales of user’s interest. MSG unifies
micromechanics and structural mechanics to provide a single theory to model all types of compos-
ite materials and structures. SwiftCompTM enables engineers to analyze composite materials and
structures similarly to metals, capturing details as needed and affordable.

To facilitate the use of SwiftCompTM, several graphic user interfaces have been developed
including Gmsh4SC, TexGen4SC, Abaqus-SwiftComp GUI, Ansys-SwiftComp GUI, and Nastran-
SwiftComp GUI. Instructions for using SwiftCompTM through these GUIs are given in user manuals
accompanying the corresponding GUIs. This manual will provide an introduction to MSG, the
history and functionalities of SwiftCompTM, conventions, inputs, outputs, maintenance, and tech
support for more advanced SwiftComp users.

∗Professor, School of Aeronautics and Astronautics, Purdue University; Director, Composites Design and
Manufacturing HUB (cdmHUB); CTO, AnalySwift LLC.

Copyright c© by Purdue Research Foundation, West Lafayette, IN 47907, USA. All Rights Reserved. Un-
less permission is granted, this material may not be copied, reproduced or coded for reproduction by any electrical,
mechanical or chemical process or combination thereof, now known or later developed.

1



2 SwiftCompTM History

SwiftCompTM is a culmination of prior work on composite structures and materials implemented
in three different codes including VABS, VAPAS, and VAMUCH developed by Prof. Wenbin Yu
and his coworkers. The VABS code was developed for composite beam modeling during Prof.
Yu’s PhD study at Georgia Tech under the supervision of Prof. Dewey Hodges. VABS was later
significantly enhanced at Utah State through its affiliation with Georgia Tech’s rotorcraft center and
commercialized by Utah State through AnalySwift LLC. The VAPAS code was developed to model
composite laminated plates and shells at Georgia Tech and VAPAS was also later enhanced at Utah
State. VAMUCH, also called SwiftComp MicromechanicsTM, is a general-purpose micromechanics
code for homogenization and dehomogenization of periodic, heterogeneous materials developed
at Utah State. In year 2012, Prof. Yu introduced the representative structural element (RSE)
concept to unify structural mechanics and micromechanics for multiscale constitutive modeling of
composites [1]. RSE concept was later renamed as SG to emphasize its role in filling the gap
between materials genome and structural analysis [2]. The founding paper of MSG was published
in year 2016 [3] featuring a general geometrical nonlinear formulation, which was simplified to
linear problems later in [4]. To implement MSG, we started the development of SwiftCompTM in
April 2014 at Purdue University. SwiftCompTM is a single code which can reproduce all of the
functionalities in VABS, VAPAS, and VAMUCH, as well as many other capabilities not found in
any of these three codes. SwiftCompTM can reproduce VABS for composite beams made of uniform
cross-sections (see the right figure of Figure 4), VAPAS for composite laminated plates and shells
(see the right figure of Figure 5), and VAMUCH for 3D periodic heterogeneous materials (see
Figure 3). However, currently not all VABS capabilities are available in SwiftCompTM and VABS
is still maintained as a separate code for cross-sectional analysis of composite beams while VAPAS
and VAMUCH are superseded by SwiftCompTM. SwiftCompTM has many more functionalities
not available in the previous three codes such as slender structures with spanwise heterogeneities,
plates and shells with in-plane heterogeneity, partially periodic structures and materials, aperiodic
structures and materials, etc.

3 SwiftCompTM Functionalities

Fundamentally speaking, SwiftCompTM takes the geometry and material characteristics of an SG
described using a finite element mesh as the input and computes the effective properties for the
macroscopic analysis. This process is commonly called homogenization. SwiftCompTM can also
compute the local fields within the SG based on global behavior obtained from the macroscopic
analysis. This process is commonly called dehomogenization, constantly neglected in some multi-
scale modeling approaches. Note that SwiftCompTM is not limited to structural modeling, it can
be used to perform multiphysics homogenization and dehomogenization of materials and structures
responsive to thermal, mechanical, electric, and magnetic fields.

3.1 Alpha Version

The alpha version of SwiftCompTM can perform the constitutive modeling corresponding to the
classical structural models including the Euler-Bernoulli beam model, Kirchhoff-Love plate/shell
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model, and 3D Cauchy continuum model.

3.2 Version 1.0

Starting SwiftCompTM 1.0, two versions of SwiftCompTM is possible: SwiftCompTM Standard and
SwiftCompTM Professional. In SwiftCompTM Professional, a direct sparse solver is used to deal
with big models which could have as many as millions of degrees of freedom. A parallel edition is
also available for SwiftCompTM Professional. For a problem that SwiftCompTM Professional runs
more than a few minutes, it is better to use the parallel edition as it can exploit multiple cores
which are readily available on most computers nowadays. In the standard version, Prof. Sloan’s
method5 is used to provide the renumbering of the finite element mesh, standard skyline storage is
used along with a regular direct linear solver. To simplify the maintenance of the code, the later
official released versions use the parallel version with a direct sparse solver.

3.2.1 Version 1.1

The pointwise anisotropic heterogeneity is enabled in SwiftCompTM 1.1. The SG can contain
phases with general anisotropic materials with material properties given in material coordinates
which could be different from the local coordinate system and defined for each element. First, an
elemental coordinate system is defined by three points for each element, then the material coordinate
system can be defined as a simple rotation around one of the axis of the elemental coordinate
element. The first capability (orientation described using an elemental coordinate system) is found
applications in woven components and short fiber reinforced composites. The second capability
(orientation described using a rotation angle) is found applications in composite laminates.

3.2.2 Version 1.2

SwiftCompTM 1.2 implements the capability to deal with aperiodic, or partially periodic SGs, or
periodic SGs without periodic nodes on the boundary surfaces.

3.2.3 Version 1.3

SwiftCompTM 1.3 implements the capability to predict initial failure strengths according to a given
failure criterion, failure envelopes for giving two load directions, and failure indexes and strength
ratios for materials and structures subject to an arbitrary loading.

3.2.4 Version 1.4

SwiftCompTM 1.4 implements homogenization, dehomogenization, initial failure analysis according
to the Timoshenko beam model.

3.2.5 Version 1.5

SwiftCompTM 1.5 implements a more efficient and robust way for predicting failure envelopes and
also a few minor bugs were fixed.
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3.2.6 Version 2.0

SwiftCompTM 2.0 implements thermoviscoelastic analysis capabilities, temperature change within
the SG, and wedge element. Also a few minor bugs were fixed.

3.2.7 Version 2.1

SwiftCompTM 2.1 perform constitutive modeling (homogenization and dehomogenization) of a block
of 3D elements to be a 3D 8-node or 20-node element.

4 Structures and Structural Models

To understand the meaning of SG, we need to define what is a structure. Structure and material
often appear together and sometimes are used interchangeably. The main reason is that the dif-
ference between structure and material is not clear. The interchangeable use of these two terms
starts from the first solid mechanics course, usually called either Strength of Materials or Mechanics
of Materials, mainly covering stress analysis of various structures including rods, shafts, columns,
beams, pressure vessels, etc. With the extensive penetration of composites in industry and the in-
creasing capabilities of fabricating materials with complex microstructures, the difference between
structure and material becomes even more elusive.

One possible difference is the presence of boundary: the material itself has no boundaries, but
rather may be considered as a point in a structure according to the continuum hypothesis. An-
other difference is that we describe a material using material properties such as Young’s moduli,
Poisson’s ratios, coefficients of thermal expansion (CTEs), yielding limits, ultimate strengths, etc.
These properties are intrinsic to the material, and will not change for different structures made
of the same material. For example, if a linear elastic material has Young’s modulus equal to 73
GPa, it will always remain this value no matter whether it is used to make a shaft or a pressure
vessel, subject to a force of 10 N or 10 kN. It is noted that for nonlinear behavior, the material
properties could depend on the current stress or strain state which the material is experiencing but
these properties are genetic (or intrinsic) to the material which means even if the material is not
experiencing any stress or strain right now, the same constitutive relations exist.

On the other hand, a structure is a solid body made of one or more materials with clearly
defined interactions with its external environment through boundary conditions, applied loads,
temperature, moisture, etc. The behavior of a structure is usually described using displacements,
strains, stresses, natural frequencies, buckling loads, failure, etc. Structures can be categorized in
terms of their external geometry. If the three dimensions of a structure are of similar size, it is
called a 3D structure (Figure 1 a). If one dimension of the structure is much smaller than the two
other dimensions, the structure is called as a plate (Figure 1 b) or shell (Figure 1 c) depending on
whether it is flat or curved along the two large dimensions. Usually the small dimension is called
thickness and the two large dimensions are called the in-plane directions. A reference surface can be
defined for a plate or shell using the two in-plane coordinates. If one dimension of the structure is
much larger than two other dimensions, the structure is called as a beam (Figure 1 d). Usually the
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large dimension is called the length, span, or axis of the beam and a reference line can be defined
for a beam using the axial coordinate. The reference line can be as general as a spatial curve
which is the case for initially curved and twisted beams. The two small dimensions are commonly
called the cross-section for typical beam-like structures. As far as the mathematical modeling is
concerned, this classification only considers the external geometry and the internal construction of
these structures can be arbitrary. For example, a porous material with holes in the body can be
modeled as a 3D solid, a sandwich flat panel with a honeycomb core can be modeled as a plate, a
high aspect ratio wing of aircraft can be modeled as a beam with no clearly defined cross-sections.
In this sense, all engineering structural systems, despite its complexity, can be considered as formed
by using a combination of structural components in terms of 3D structures, plates/shells, and/or
beams as shown in Figure 1 with possible complex internal constructions.

Figure 1: Typical structural components.

How to predict displacements, strains, and stresses within structures using mathematical mod-
els belongs to the long standing branch of applied mechanics call structural mechanics. Although
there are historical and practical reasons for classifying structures as 3D structures, plates/shells,
and beams, different names for different structures have also motivated us to construct different
mathematical models for modeling different structures. Let us use x1, x2, x3 to denote the global
Cartesian coordinate system. Beams, plates, and shells are also collectively called dimensionally
reducible structures because it is possible for us to eliminate the small dimension(s) to create di-
mensionally reduced models (1D or 2D models) for these structures [6]. More specifically, we can
create one-dimensional (1D) models (also called beam models) for beam-like structures. The field
variables of beam models are functions of a single coordinate x1 describing the beam reference line.
We can also create two-dimensional (2D) models (also called plate/shell models) for plate/shell-like
structures. The field variables of plate/shell models are functions of x1 and x2, the two in-plane
coordinates describing the plate/shell reference surface. Here, the notation of 1D, 2D, or 3D refers
to the number of coordinates needed to describe the analysis domain. It does not correspond to
the dimensionality of the behavior. For example, a 1D beam model can describe the displacements
and the rotations of the structure in three directions in space.

Each model contains three sets of equations including kinematics, kinetics, and constitutive re-
lations, among which only the constitutive relations change for different materials used to make the
structure. For composites, the stiffness matrix could be fully populated. The task to compute the
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constitutive relations is called constitutive modeling. 3D properties (e.g. Young’s moduli, Poisson’s
ratios, and shear moduli, etc.) could be obtained either experimentally or through a micromechan-
ics calculation. For isotropic homogeneous structures, 3D material properties are direct inputs for
structural analysis using a 3D solid model, and these properties combined with geometric charac-
teristics of the structure can be used for a structural analysis using plate/shell/beam models with
the structural stiffness (e.g. EA,EI,GJ , etc.) obtained based on apriori assumptions such as the
Euler-Bernoulli assumptions for beams. However, such straightforwardness does not exist for struc-
tures featuring anisotropy and/or heterogeneity. Many refined assumptions, such as higher-order
assumptions, zigzag assumptions, layerwise assumptions, have been introduced to better capture
the kinematics along the smaller dimensions of the structure (the thickness of a plate/shell or the
cross-section of a beam) in most other approaches.

Structural analyses are routinely carried out using finite element analysis (FEA) codes such as
Abaqus, Ansys, and Nastran in terms of 3D solid elements, 2D plate or shell elements, or 1D beam
elements (see Figure 2). Each element type is governed by a corresponding structural model which
contains kinematics, kinetics, and constitutive relations. The commonly used engineering beam
models include the Euler-Bernoulli model and the Timoshenko model. The Euler-Bernoulli model is
also commonly called the classical beam model. The commonly used engineering plate/shell models
are the Kirchhoff-Love model and the Reissner-Mindlin model. The Kirchhoff-Love model is also
commonly called the classical plate/shell model and the Reissner-Mindlin model is also commonly
called the first-order shear-deformation plate/shell model. The commonly used engineering 3D
model is the Cauchy continuum model which is also commonly called the classical continuum
model. Here, we will restrict ourselves to structures made of linear elastic materials to illustrate
the basics of each structural model although it is emphasized that MSG has no such restriction.
The models for structures featuring geometrical and material nonlinearities can be found in relevant
MSG publications.

Figure 2: Typical structural elements.
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4.1 Cauchy Continuum Model

The kinematics of the Cauchy continuum model contains three displacements (u1, u2, u3) and six
strains (ε11, ε22, ε33, ε23, ε13, ε12). The strain-displacement relations are given as

ε11 =
∂u1
∂x1

, ε22 =
∂u2
∂x2

, ε33 =
∂u3
∂x3

2ε23 =
∂u2
∂x3

+
∂u3
∂x2

, 2ε13 =
∂u1
∂x3

+
∂u3
∂x1

, 2ε12 =
∂u1
∂x2

+
∂u2
∂x1

(1)

The kinetics of the Cauchy continuum model is described using six stresses (σ11, σ22, σ33, σ23, σ13, σ12)
which are functions of x1, x2, x3. These stresses are governed by the following equations of equilib-
rium:

∂σ11
∂x1

+
∂σ12
∂x2

+
∂σ13
∂x3

+ f1 = 0

∂σ12
∂x1

+
∂σ22
∂x2

+
∂σ23
∂x3

+ f2 = 0

∂σ13
∂x1

+
∂σ23
∂x2

+
∂σ33
∂x3

+ f3 = 0

(2)

where f1, f2, f3 are distributed body forces per unit volume. The constitutive relations of the
Cauchy continuum model for the linear elastic behavior are described using the Hooke’s law as

σ11
σ22
σ33
σ23
σ13
σ12


=



C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66





ε11
ε22
ε33
2ε23
2ε13
2ε12


(3)

The 6 × 6 matrix Cij is called the stiffness matrix and its inverse is called the compliance ma-
trix. Note that material properties are usually provided in the so-called material coordinate system
which implies that we need to write constitutive relations in the material coordinate system first.
However, the kinematics and kinetics are usually formulated in the global coordinate system. A
proper transformation according to the tensorial transformation laws is needed to transfer the con-
stitutive relations into the global coordinate system.

For isotropic materials, the constitutive relations can be expressed in terms of the Young’s
modulus E and Poisson’s ratio ν as

ε11
ε22
ε33
2ε23
2ε13
2ε12


=



1
E − ν

E − ν
E 0 0 0

− ν
E

1
E − ν

E 0 0 0
− ν
E − ν

E
1
E 0 0 0

0 0 0 2(1+ν)
E 0 0

0 0 0 0 2(1+ν)
E 0

0 0 0 0 0 2(1+ν)
E





σ11
σ22
σ33
σ23
σ13
σ12


(4)
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which can be inverted to obtain the same expression as Eq. (3) with

C11 = C22 = C33 =
E(1− ν)

(1 + ν)(1− 2ν)

C12 = C13 = C23 =
Eν

(1 + ν)(1− 2ν)

C44 = C55 = C66 =
E

2(1 + ν)
(5)

and all other terms in the stiffness matrix of Eq. (3) are zero.

For orthotropic materials, the constitutive relations can be expressed as

ε11
ε22
ε33
2ε23
2ε13
2ε12


=



1
E1

−ν21
E2

−ν31
E3

0 0 0

−ν12
E1

1
E2

−ν32
E3

0 0 0

−ν13
E1

−ν23
E2

1
E3

0 0 0

0 0 0 1
G23

0 0

0 0 0 0 1
G13

0

0 0 0 0 0 1
G12





σ11
σ22
σ33
σ23
σ13
σ12


(6)

where E1, E2, E3 are Young’s moduli in three directions, G12, G13, G23 are shear moduli in three
directions, ν12, ν13, ν23 and ν21, ν31, ν32 are two set of Poisson’s ratios. Usually only ν12, ν13, ν23 are
given and the other Poisson’s ratios are calculated as

ν21 = ν12E2/E1, ν31 = ν13E3/E1, ν32 = ν23E3/E2

due to the symmetry of the compliance matrix.

Eq. (6) can be inverted to obtain the same expression as Eq. (3) with

C11 = E1(1− ν23ν32)/∆, C12 = E2(ν12 + ν13ν32)/∆, C13 = E3(ν13 + ν12ν23)/∆,

C22 = E2(1− ν13ν31)/∆, C23 = E3(ν23 + ν13ν21)/∆, C33 = E3(1− ν12ν21)/∆,
C44 = G23, C55 = G13, C66 = G12

with
∆ = 1− ν12ν21 − ν23ν32 − ν13ν31 − 2ν21ν13ν32

and all other terms in Eq. (3) are zero.

Eqs. (1), (2), and (3) form a system of 15 equations underpinning the Cauchy continuum model
to be solved along with appropriate boundary conditions for 15 unknowns (three displacements, six
strains, and six stresses). This model has been implemented in many FEA codes which have 3D
solid elements. Kinematics and kinetics remain the same no matter whether the structure is made
of metals or composites. Only the constitutive relations will be different, see Eq. (3) for general
anisotropic materials, Eq. (4) for isotropic materials, and Eq. (6) for orthotropic materials.

8



It is worthy to point out that there are two degenerated version of the 3D Cauchy continuum
model: plane stress model and plane strain model. Plane stress model assumes that all the out-
of-plane stresses vanish. For example, if the plane stress model is formulated in the x1 − x2 plane,
we assume σ13 = σ23 = σ33 = 0. Plane strain model assumes that all the out-of-plane strains
vanish. For example, if the plane strain model is formulated in the x1 − x2 plane, we assume
ε13 = ε23 = ε33 = 0. The kinematics of the plane stress model and the plane strain model remain
the same as

ε11 =
∂u1
∂x1

, ε22 =
∂u2
∂x2

, 2ε12 =
∂u1
∂x2

+
∂u2
∂x1

(7)

The kinetics of the plane stress model and the plane strain model remain the same as

∂σ11
∂x1

+
∂σ12
∂x2

+ f1 = 0

∂σ12
∂x1

+
∂σ22
∂x2

+ f2 = 0

(8)

The constitutive relations of the plane strain model are
σ11
σ22
σ12

 =

C11 C12 C16

C12 C22 C26

C16 C26 C66


ε11
ε22
2ε12

 (9)

The constitutive relations of the plane stress model are
σ11
σ22
σ12

 =

Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66


ε11
ε22
2ε12

 (10)

where Qij are the so-called plane-stress-reduced stiffnesses which are different from Cij . They
are computed by substituting σ13 = σ23 = σ33 = 0 into Eq. (3) to obtain ε33, 2ε23, 2ε13 in terms
of ε11, ε22, 2ε12. Then substituting these relations back into Eq. (3) to obtain the relationship in
Eq. (10). For isotropic materials, we have

Q11 = Q22 =
E

1− ν2
, Q12 =

Eν

1− ν2
, Q16 = Q26 = 0, Q66 =

E

2(1 + ν)

which are different from Cij for isotropic materials given in Eq. (5). For anisotropic materials, Qij
expressions can be found in a typical textbook on mechanics of composite materials.

4.2 Kirchhoff-Love Plate/Shell Model

Kirchhoff originally developed the classical plate model for flat panels based on a set of ad hoc
assumptions including the transverse normal line being rigid in the thickness direction, perpendic-
ular to the reference surface, and plane stress assumption. Love later extended the same set of
assumptions to curved panels to develop the classical shell model. Since both models are based
on the same set of assumptions and assume the same model form, we call them collectively as the
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Kirchhoff-Love model. Here, we use the plate model for illustrative purpose. The kinematics of the
Kirchhoff-Love model contains three displacements (u1, u2, u3) and six strain variables including
in-plane strains (ε11, ε22, ε12) and curvatures (κ11, κ22, κ12). For a plate, the strain-displacement
relations are given as

ε11 =
∂u1
∂x1

, ε22 =
∂u2
∂x2

, 2ε12 =
∂u1
∂x2

+
∂u2
∂x1

κ11 = −∂
2u3
∂x21

, κ22 = −∂
2u3
∂x22

, κ12 = − ∂2u3
∂x1∂x2

(11)

The kinetics of the Kirchhoff-Love model contains six stress resultants (N11, N22, N12,M11,M22,M12)
with N11, N22, N12 denoting in-plane forces and M11,M22,M12 denoting moments. These kinetic
variables are governed by the following three equations of equilibrium

∂N11

∂x1
+
∂N12

∂x2
+ p1 = 0

∂N21

∂x1
+
∂N22

∂x2
+ p2 = 0

∂2M11

∂x12
+
∂2M22

∂x22
+ 2

∂2M12

∂x1∂x2
+
∂q2
∂x1
− ∂q1
∂x2

+ p3 = 0

(12)

where p1, p2, p3 are equivalent forces and q1, q2 are equivalent moments, distributed over the refer-
ence surface.

The constitutive relations of the Kirchhoff-Love model can be expressed using the following
matrix equation. 

N11

N22

N12

M11

M22

M12


=



A11 A12 A16 B11 B12 B16

A12 A22 A26 B12 B22 B26

A16 A26 A66 B16 B26 B66

B11 B12 B16 D11 D12 D16

B12 B22 B26 D12 D22 D26

B16 B26 B66 D16 D26 D66





ε11
ε22
2ε12
κ11
κ22
2κ12


(13)

This 6 × 6 matrix is commonly called the plate stiffness matrix and its inverse is called the plate
compliance matrix for the Kirchhoff-Love model. If a plate is made of a single isotropic material,
and the origin of x3 is located at the center of the thickness, the constitutive relations can be
written as

N11

N22

N12

 =
Eh

1− ν2

1 ν 0
ν 1 0
0 0 1−ν

2


ε11
ε22
2ε12

 ,


M11

M22

M12

 =
Eh3

12(1− ν2)

1 ν 0
ν 1 0
0 0 1−ν

2


κ11
κ22
2κ12

 (14)

Clearly extension and bending are decoupled for this particular case.

Eqs. (11), (12), and (13) form a system of 15 equations underpinning the Kirchhoff-Love model
to be solved along with appropriate boundary conditions for 15 unknowns (three displacements,
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six strain variables, and six stress resultants). Kinematics and kinetics remain the same no matter
whether the structure is made of metals or composites and these equations have been implemented
in many FEA codes which have plate/shell elements. Only difference is that the plate/shell stiffness
matrix in Eq. (13) could be fully populated if the plate/shell is made of composites.

Although the Kirchhoff-Love model was originally developed based on a set of ad hoc assump-
tions as aforementioned, such assumptions are not used in MSG to derive this model. Also, although
we used the familiar terms of A,B,D matrices describing the plate stiffness matrix as those used in
the classical lamination theory (CLT), none of the assumptions associated with CLT is necessary
for MSG to derive the Kirchhoff-Love model. Thus, the Kirchhoff-Love model here only refers to
the model which has 15 field variables of x1, x2 governed by the 15 equations in Eqs. (11), (12) and
(13). In other words, according to the MSG-based Kirchhoff-Love model, the transverse normal
line could be deformed, not necessarily perpendicular to the reference surface, and all six stress
components including both in-plane stresses and transverse stresses could exist.

4.3 Reissner-Mindlin Plate/Shell Model

When the thickness of the panel is not very small with respect to the in-plane dimensions, the
Kirchhoff-Love model is inadequate and a refined model is needed. The next refinement is the
so-called Reissner-Mindlin model due to independent contributions of Reissner and Mindlin to its
development. The kinematics of the Reissner-Mindlin model contains five displacement variables in-
cluding three displacements (u1, u2, u3) and two rotations (θ1, θ2), and eight strain variables includ-
ing in-plane strains (ε11, ε22, ε12), curvatures (κ11, κ22, κ12), and transverse shear strains (γ12, γ13).
For a plate, the strain-displacement relations are

ε11 =
∂u1
∂x1

, ε22 =
∂u2
∂x2

, 2ε12 =
∂u1
∂x2

+
∂u2
∂x1

κ11 =
∂θ2
∂x1

, κ22 = − ∂θ1
∂x2

, κ12 = − ∂θ2
∂x2
− ∂θ1
∂x1

γ13 =
∂u3
∂x1

+ θ2, γ23 =
∂u3
∂x2
− θ1

(15)

The kinetics of the Reissner-Mindlin model contains eight stress resultants (N11, N22, N12,M11,
M22,M12, N13, N23) with N11, N22, N12 denoting in-plane forces, M11,M22,M12 denoting moments,
and N13, N23 denoting transverse shear forces. These kinetic variables are governed by the following
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five equations of equilibrium:

∂N11

∂x1
+
∂N12

∂x2
+ p1 = 0

∂N21

∂x1
+
∂N22

∂x2
+ p2 = 0

∂N13

∂x1
+
∂N23

∂x2
+ p3 = 0

∂M12

∂x1
+
∂M22

∂x2
− q1 −N23 = 0

∂M11

∂x1
+
∂M21

∂x2
+ q2 −N13 = 0

(16)

The constitutive relations of the Reissner-Mindlin model can be expressed using the following
matrix equation:

N11

N22

N12

M11

M22

M12

N13

N23


=



A11 A12 A16 B11 B12 B16 Y11 Y12
A12 A22 A26 B12 B22 B26 Y21 Y22
A16 A26 A66 B16 B26 B66 Y31 Y32
B11 B12 B16 D11 D12 D16 Y41 Y42
B12 B22 B26 D12 D22 D26 Y51 Y52
B16 B26 B66 D16 D26 D66 Y61 Y62
Y11 Y21 Y31 Y41 Y51 Y61 C11 C12

Y12 Y22 Y32 Y42 Y 52 Y62 C12 C22





ε11
ε22
2ε12
κ11
κ22
2κ12
γ13
γ23


(17)

This 8 × 8 matrix is called the plate stiffness matrix and its inverse is called the plate compli-
ance matrix for the Reissner-Mindlin model. Gij(i = 1, 2; j = 1, 2) denote the transverse shear
stiffness terms and Yij (i = 1, . . . , 6; j = 1, 2) denote the coupling stiffness terms relating the clas-
sical plate deformation modes and transverse shear deformation modes. It is noted that A,B,D
matrices could be different from those in Eq. (13) due to possible nonzero Yij (i = 1, . . . , 6; j = 1, 2).

Eqs. (15), (16), and (17) form a system of 21 equations underpinning the Reissner-Mindlin
model to be solved along with appropriate boundary conditions for 21 unknowns (five displacement
variables, eight strain variables, and eight stress resultants). Kinematics and kinetics remain the
same no matter whether the structure is made of metals or composites and these equations have
been implemented in many FEA codes which have plate/shell elements. Only difference is that
the plate/shell stiffness matrix in Eq. (17) could be fully populated if the plate/shell is made of
composites.

Although the Reissner-Mindlin model was originally developed based on a set of ad hoc assump-
tions, such assumptions are not used in MSG to derive this model. Thus, the Reissner-Mindlin
model here only refers to the model which has 21 field variables of x1, x2 governed by the 21 equa-
tions in Eqs. (15), (16) and (17). The deformation and stress state of the structure are not assumed
a priori but determined by MSG.
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4.4 Euler-Bernoulli Beam Model

The kinematics of the Euler-Bernoulli beam model contains four displacement variables u1, u2, u3, θ1
with u1, u2, u3 describing displacements in three directions and θ1 describing the twist angle, and
four strain variables including axial strain γ11, twist rate κ11, and curvatures κ12, κ13 around x2
and x3, respectively. The strain-displacement relations are

γ11 =
du1
dx1

, κ11 =
dθ1
dx1

, κ12 = −d2u3
dx21

, κ13 =
d2u2
dx21

(18)

The kinetics of the Euler-Bernoulli beam model contains four stress resultants (F1,M1,M2,M3)
with F1 denoting axial force and M1,M2,M3 denoting moments about three directions. These
kinetic variables are governed by the following four equations of equilibrium:

dF1

dx1
+ p1 = 0

dM1

dx1
+ q1 = 0

d2M2

dx21
+ p3 +

dq2
dx1

= 0

d2M3

dx21
− p2 +

dq3
dx1

= 0

(19)

where p1, p2, p3 are equivalent forces and q1, q2, q3 are equivalent moments in three directions, dis-
tributed along the reference line.

The constitutive relations of the Euler-Bernoulli beam model can be expressed using the fol-
lowing matrix equation: 

F1

M1

M2

M3

 =


Cb11 Cb12 Cb13 Cb14
Cb12 Cb22 Cb23 Cb24
Cb13 Cb23 Cb33 Cb34
Cb14 Cb24 Cb34 Cb44



γ11
κ11
κ12
κ13

 (20)

This 4× 4 matrix is commonly called the beam stiffness matrix and its inverse is called the beam
compliance matrix for the Euler-Bernoulli model. If a beam is made of a single isotropic material,
and the origin of the cross-sectional coordinates x2, x3 is chosen to be at the tension center of the
cross-section and x2, x3 are chosen to align with the principal bending directions of the beam, the
constitutive relations can be written as

F1

M1

M2

M3

 =


EA 0 0 0
0 GJ 0 0
0 0 EI2 0
0 0 0 EI3



γ11
κ11
κ12
κ13

 (21)

Clearly the beam stiffness matrix becomes a diagonal matrix for this particular case and the di-
agonal terms are the well known engineering constants including extension stiffness EA, torsional
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stiffness GJ , and bending stiffnesses EI2 and EI3 for bending about x2 and x3 respectively.

Eqs. (18), (19), and (20) form a system of 12 equations underpinning the Euler-Bernoulli model
to be solved along with appropriate boundary conditions for 12 unknowns (four displacement vari-
ables, four strain variables, and four stress resultants). Kinematics and kinetics remain the same
no matter whether the structure is made of metals or composites and these equations have been
implemented in many FEA codes which have beam elements. Only difference is that the beam
stiffness matrix in Eq. (20) could be fully populated if the beam is made of composites. It is noted
that many beam problems, particularly those with a uniform cross-section, can be solved analytical
using what we have learned in undergraduate mechanics of materials.

Although the Euler-Bernoulli model was originally developed based on a set of ad hoc as-
sumptions including the cross-section being rigid in plane, perpendicular to the reference line, and
uniaxial stress assumption. However, such assumptions are not used in MSG to derive this model.
Thus, the Euler-Bernoulli model here only refers to the model which has 12 field variables of x1
governed by the 12 equations in Eqs. (18), (19) and (20). In other words, according to the MSG-
based Euler-Bernoulli model, the cross-section could be deformed, not necessarily perpendicular to
the reference line, and all six stress components could exist. Actually, the slender structure which
is modeled using an MSG-based beam model may not even have clearly defined cross-sections.
As long as an SG for the slender structure can be defined, an MSG-based beam model can be
constructed for the structural analysis.

4.5 Timoshenko Beam Model

The kinematics of the Timoshenko beam model contains six displacement variables (u1, u2, u3, θ1, θ2, θ3)
with u1, u2, u3 describing displacements in three directions and θ1, θ2, θ3 describing rotations about
three directions and six strain variables including axial strain γ11, transverse shear strains (γ12, γ13),
twist rate κ11, and curvatures (κ12, κ13). The strain-displacement relations are

γ11 =
du1
dx1

, γ12 = −θ3 +
du2
dx1

, γ13 = θ2 +
du3
dx1

κ11 =
dθ1
dx1

, κ12 =
dθ2
dx1

, κ13 =
dθ3
dx1

(22)

The kinetics of the Timoshenko beam model contains six stress resultants (F1, F2, F3,M1,M2,M3)
with F1 denoting axial force, F2 and F3 denoting transverse shear forces, and M1,M2,M3 denoting
bending moments about three directions. These kinetic variables are functions of x1 only and they
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are governed by the following six equations of equilibrium:

dF1

dx1
+ p1 = 0

dF2

dx1
+ p2 = 0

dF3

dx1
+ p3 = 0

dM1

dx1
+ q1 = 0

dM2

dx1
− F3 + q2 = 0

dM3

dx1
+ F2 + q3 = 0

(23)

The constitutive relations of the Timoshenko beam model can be expressed using the following
matrix equation: 

F1

F2

F3

M1

M2

M3


=



Cb11 Cb12 Cb13 Cb14 Cb15 Cb16
Cb12 Cb22 Cb23 Cb24 Cb25 Cb26
Cb13 Cb23 Cb33 Cb34 Cb35 Cb36
Cb14 Cb24 Cb34 Cb44 Cb45 Cb46
Cb15 Cb25 Cb35 Cb45 Cb55 Cb56
Cb16 Cb26 Cb36 Cb46 Cb56 Cb66





γ11
γ12
γ13
κ11
κ12
κ13


(24)

This 6× 6 matrix is called the beam stiffness matrix and its inverse is called the beam compliance
matrix for the Timoshenko model. It is noted that Cbij (i = 1, 2, 3, 4; j = 1, 2, 3, 4) in this stiffness
matrix could be different from those in Eq. (20).

Eqs. (22), (23), and (24) form a system of 18 equations to be solved along with appropriate
boundary conditions for 18 unknowns (six displacement variables, six strain variables, and six stress
resultants). Kinematics and kinetics remain the same no matter whether the structure is made of
metals or composites and these equations have been implemented in many FEA codes which have
beam elements. Only difference is that the beam stiffness matrix in Eq. (24) could be fully popu-
lated if the beam is made of composites.

It is noted that although the Timoshenko model was originally developed based on a set of ad hoc
assumptions including the cross-section being rigid in plane, remaining plane during deformation,
and uniaxial stress assumption. However, such assumptions are not used in MSG to derive this
model. Thus, the Timoshenko model here only refers to the model which has 18 field variables of
x1 governed by the 18 equations in Eqs. (22), (23) and (24).
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5 Mechanics of Structure Genome (MSG)

5.1 The Concept of Structure Gene (SG) and Structure Genome

Inspired by the fundamental role of the gene for an organism’s growth and development, we ex-
trapolate this word into non-biological contexts to define SG as the smallest mathematical building
block of a structure. SG contains all the constitutive information needed for a structure in the same
fashion as the gene contains all the genetic information for an organism. A structure may have more
than one fundamental building blocks. The complete set of structure genes present in a structure
is called Structure Genome for that structure. It is noted that if one is using SwiftCompTM for
multiphysics behavior other than structural behavior, an SG should be interpreted as the smallest
mathematical building block (or gene) of the material instead.

Figure 3: Analysis of 3D heterogeneous structures approximated by a constitutive modeling over
an SG and a corresponding 3D macroscopic structural analysis.

5.2 SG for 3D Structures

As shown in Figure 3, analyses of 3D heterogeneous structures can be approximated by a 3D
macroscopic structural analysis with the material properties provided by a constitutive modeling
of an SG. For 3D structures, SG serves a similar role as the representative volume element (RVE)
in micromechanics. However, they are significantly different so that the new term, SG, is used
to avoid confusion. For example, for a structure made of composites featuring 1D heterogeneity
(e.g. composite laminates made of layers with different orientations, Figure 3a), the SG will be the
transverse normal line with segments denoting the corresponding layers. One can mathematically
repeat this line in-plane to build the composite laminate. One possible application of 1D SG for
3D structures is to compute the effective 3D properties of a composite laminate. The constitutive
modeling over the 1D SG can compute the complete set of 3D properties and local fields. Such
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Figure 4: Analysis of beam-like structures approximated by a constitutive modeling over an SG
and a corresponding 1D beam analysis.

applications of SG are not equivalent to RVE. For a structure made of composites featuring 2D
heterogeneity (e.g. continuous unidirectional fiber reinforced composites, Figure 3b), the SG will
be 2D. Although 2D RVEs are also used in micromechanics, only in-plane properties and in-plane
local fields can be obtained from common RVE-based models. If the complete set of properties
are needed for the 3D structural analysis, a 3D RVE is usually required [7], while a 2D domain is
sufficient if it is modeled using SG-based models (Figure 3b). For a structure made of composites
featuring 3D heterogeneity (e.g. textile composites, Figure 3c), the SG will be a 3D volume. Al-
though a 3D SG for 3D structures represents the most similar case to RVE, boundary conditions
in terms of displacements and tractions indispensable in RVE-based models are not needed for
SG-based models.

5.3 SG for Dimensionally Reducible Structures

SG also allows direct connection of microstructure with the beam/plate/shell analyses. For exam-
ple, the structural analysis of slender (beam-like) structures can use beam elements (Figure 4). If
the beam has uniform cross-sections which could be made of isotropic homogeneous materials or
anisotropic heterogeneous materials (Figure 4a), its SG is the 2D cross-sectional domain because
the cross-section can be projected along the beam reference line to form the beam-like structure.
This inspires a new perspective toward beam modeling, a traditional branch of structural mechan-
ics. If the beam reference line is considered as a general 1D continuum, every material point of
this continuum has a cross-section as its microstructure. In other words, constitutive modeling for
beams can be effectively viewed as an application of micromechanics. If the beam is also hetero-
geneous in the spanwise direction (Figure 4b), a 3D SG is needed to describe the microstructure
of the 1D continuum, the behavior of which is governed by the 1D beam analysis. The constitu-
tive modeling over an SG should compute the beam stiffness for the beam analysis, and also the
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Figure 5: Analysis of plate-like structures approximated by a constitutive modeling over SG and a
corresponding 2D plate analysis.

complete 3D displacement, stress, and strain fields within the original structure. The concept of
SG provides a unified treatment of structural modeling and micromechanics modeling and enables
us to collapse the cross-section or a 3D beam segment into a material point for a beam analysis
over the reference line with a possible, fully populated stiffness matrix simultaneously accounting
for all the deformation modes of a certain model such as the Euler-Bernoulli beam model (exten-
sion, torsion, and bending in two directions) or the Timoshenko beam model (extension, torsion,
bending in two directions, and shear in two directions). The beam model constructed this way can
easily handle buildup structures as long as their external contours look like a beam such as high as-
pect ratio wings, or as long as the analyst wants to model a slender structure using a beam element.

If the structural analysis uses plate/shell elements, SG can also be chosen properly. For il-
lustrative purpose, typical SGs of plate-like structures are sketched in Figure 5. If the plate-like
structures feature no in-plane heterogeneities (in other words, the structure is a laminate made of
homogeneous layers) (Figure 5a), the SG is the transverse normal line with each segment denoting
the corresponding layer. For a sandwich panel with a core corrugated in one direction (Figure 5b),
the SG is 2D. If the panel is heterogeneous in both in-plane directions (Figure 5c), such as a stiff-
ened panel with stiffeners running in both directions or a panel made of 3D textile composites,
the SG is 3D. Despite the different dimensionalities of the SGs, the constitutive modeling should
compute structural properties for the corresponding structural analysis (such as the A, B, and D
matrices for the Kirchhoff-Love plate model) and relations to express the original 3D fields in terms
of the global behavior (e.g. moments, curvatures, etc.) obtained from the plate/shell analysis. It
is known that theories of plates/shells traditionally belong to structural mechanics, but the con-
stitutive modeling of these structures can be treated as special micromechanics applications using
the SG concept. For a plate/shell-like structure, if the reference surface is considered as a general
2D continuum, every material point of this continuum has an associated SG as its microstructure.
Plate/shell models constructed using the SG concept can handle buildup structures as long as their
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external contours look like plates or shells or we want to model a structure using plate or shell
elements.

It is easy to identify SGs for periodic structures as shown in Figures 3, 4, and 5. For struc-
tures which are not globally periodic, we usually assume that the structure is at least periodic in
the neighborhood of a material point in the macroscopic structural analysis, the so-called local
periodicity assumption implicit in all multiscale modeling approaches. For nonlinear behavior, it
is also possible that the smallest mathematical building block of the structure is not sufficient as
the characteristic length scale of the nonlinear behavior may cover several building blocks. For
this case, the SG should be interpreted as the smallest mathematical building block necessary to
represent the nonlinear behavior. In the most general cases, SG can be considered as the block of
material corresponding to the element in finite element mesh of the macroscopic structural anal-
ysis. In the extreme case, a structure could have as many SGs as the number of elements in the
macroscopic structural analysis. To be rigorous, such extreme cases should be handled by DNS of
all the details in the macroscopic structural analysis because the local periodicity assumption is not
valid. However, in real structural design and analysis, the multiscale approach is still practiced.
For example, for a wind turbine blade, the cross section is changing significantly along the span.
In preliminary design of wind turbine blades, the blade is cut into hundreds of stations with each
cross-section considered as an SG for a corresponding beam element. Such a modeling approach is
usually needed for the multibody dynamic analysis at the system level. According to the taxonomy
in biology, genome is defined as the complete set of genes present in an organism. In this sense, we
can consider the totality of all the cross-sections we used in this analysis as the structure genome
of the wind turbine blade.

SG serves as the link between the original structure with microscopic details and the macro-
scopic structural analysis. Here, the terms “microstructure” and “microscopic details” are used
in a general sense: any details explicitly existing in an SG but not in the macroscopic structural
analysis are termed microscopic details. The real structure with microscopic details is termed as
the original structure and the structure used in the macroscopic structural analysis is termed as
the macroscopic structural model. It is also interesting to point out the relation between the SG
concept and the idea of sub-structuring or super-element, which is commonly used in engineering.
A line element in the global analysis could correspond to a box beam made of four laminated walls,
and a surface element could correspond to a sandwich panel with laminated face sheets and a cor-
rugated core. For these cases, MSG provides a rigorous and systematic approach to compute the
constitutive models for the line and surface elements and the local fields (displacements, stresses,
and strains) within the original structures.

For some applications, the local periodicity assumption may not be valid. In other words,
SG cannot be considered as a point in the macroscopic analysis. To remove this assumption,
SwiftCompTM 2.1 added the capability for performing constitutive modeling of a SG meshed with
many 3D elements to be a single, homogeneous 3D 8-node or 20-node element. SwiftCompTM

will perform homogenization of the SG to obtain the effective element stiffness matrix for the
homogeneous element, which can used as input for the macroscopic structural analysis using the
homogeneous element. The macroscopic analysis will compute the nodal values of the homogeneous
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Figure 6: The basic idea of constitutive modeling of a block of 3D elements to be a single 3D
element.

element which can be used as input for SwiftCompTM to perform dehomogenization to compute the
3D fields (displacements/stresses/strains) within the SG. It is noted that the macroscopic structural
analysis using homogeneous elements can be handled by FEA codes which allow users to define
their own element type such as the Abaqus UEL subroutine. The basic idea is illustrated in Figure 6.

5.4 MSG-based Multiscale Structural Modeling

The multiscale structural modeling approach based on MSG can be used to fill the gap between
materials genome and macroscopic structural analysis and can directly connect with simple struc-
tural elements (beam/plate/shell/3D solid elements) available in standard FEA software packages
(see Figure 2).

As shown in Figure 7, MSG starts from the original model formulated in terms of 3D continuum
mechanics. We first identify SG for a structure, then use the principle of minimum information loss
(PMIL) to decouple the original problem to a constitutive modeling over the SG and a structural
analysis. The constitutive modeling has been implemented in SwiftCompTMfor computing the ef-
fective properties needed in the structural analysis and local fields within the original structure.
The structural analysis can be formulated as a geometrically exact continuum theory and all the
approximations are confined in the constitutive modeling, accuracy of which is guaranteed to be
the best by PMIL.

As the macroscopic structural analysis can be easily handled by standard FEA software pack-
ages, this MSG-based multiscale structural modeling approach enables these FEA software packages
to model composites as a black aluminum in the macroscopic structural analysis with minimized
loss of accuracy. But this “black aluminum” is a 1D (beam), 2D (plate/shell), or 3D (solid) contin-
uum featuring general anisotropic constitutive relations, not an isotropic material as traditionally
implied by this commonly used term. The unique features of this multiscale modeling approach
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Figure 7: Work flow of MSG-based multiscale modeling.

based on MSG and its companion code SwiftCompTM are:

• Use SG to fill the gap between materials genome and the macroscopic structural analysis.
Intellectually, SG enables us to view constitutive modeling of structures as an application
of micromechanics. Technically, SG empowers us to systematically model complex buildup
structures with heterogeneities of length scales comparable to the smallest structural dimen-
sion.

• Use PMIL based on the powerful variational asymptotic method (VAM) to avoid apriori
assumptions commonly invoked in other approaches, providing the most mathematical rigor
and the best engineering generality.

• Decouple the original problem into two sets of analyses: a constitutive modeling and a struc-
tural analysis. This allows the structural analysis to be formulated exactly as a general (1D,
2D, or 3D) continuum, the analysis of which is readily available in commercial FEA software
packages and confines all approximations to the constitutive modeling, the accuracy of which
is guaranteed to be the best by PMIL.

• Maintain the engineering simplicity and legacy by repacking the refined asymptotically correct
functionals into common engineering models so that models constructed using this approach
can be incorporated into standard FEA software packages.

Since most of the theoretical details of SG are presented in its relevant publications [1, 2, 3,
4, 8, 9, 10, 11, 12, 13, 14, 15, 16], this manual will only serve to help readers get started using
SwiftCompTM to solve their own constitutive modeling problems. In the following, we will address
its conventions, inputs, outputs, maintenance, and tech support.
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Figure 8: 1D element nodal numbering.

6 SwiftCompTM Conventions

To understand the inputs and interpret outputs of the program correctly, we need to explain some
conventions used in SwiftCompTM.

6.1 Elements

Figure 9: 2D element nodal numbering.

SwiftCompTM meshes 1D SGs using two-node, three-node, four-node, or five-node elements for
as shown in Figure 8. Nodes 3, 4, 5 are optional and one or more of these nodes can be miss-
ing for a valid 1D element. It is recommended to use 2-node elements for 3D structures with a
1D SG (see Figure 3a) and 5-node elements for 2D plate/shell models with a 1D SG (see Figure 5a).

SwiftCompTM meshes 2D SGs using either triangular or quadrilateral elements as shown in
Figure 9. It is also shown in the figure that SwiftCompTM numbers the nodes of each 2D elements
in the counterclockwise direction. Nodes 1, 2, and 3 of the triangular elements and nodes 1, 2,
3, and 4 of the quadrilateral elements are at the corners. For triangular element, the fourth node
is zero to inform SwiftCompTM that it is a triangular element. Nodes 5, 6, 7 of the triangular
elements and nodes 5, 6, 7, 8, 9 of quadrilateral elements are optional. Any one or more of these
nodes can be missing for a valid 2D element.

SwiftCompTM meshes 3D SGs using tetrahedral elements, brick elements, or wedge elements as
shown in Figure 10. For tetrahedral elements, the fifth node is zero to inform SwiftCompTM that
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Figure 10: 3D element nodal numbering.

it is a tetrahedral element. For wedge elements, the seventh node is zero to inform SwiftCompTM

that it is a wedge element. The nodes other than the corners are optional. Any one or more of
these nodes can be missing for a valid 3D element.

6.2 Local Coordinate System, Elemental Coordinate System, and Material Co-
ordinate System

Figure 11: Local coordinate system describing SG.

First, SwiftCompTM uses a right-hand Cartesian coordinate system, also called the local coor-
dinate system, denoted as y1, y2 and y3, to describe a 3D SG, y2 and y3 to describe a 2D SG, and
y3 to describe a 1D SG (see Figure 11). y1, y2, y3 are parallel to the global coordinates x1, x2, x3,
respectively. The global coordinates x1, x2, x3 are used to describe the original structure and the
macroscopic structure. Note that if the material properties are provided in a coordinate system dif-
ferent from y1, y2, y3, an additional coordinate system called the material coordinate system should
be defined and a transformation of the material properties from the material coordinate system
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into those expressed in the local coordinate system is automatically carried out by SwiftCompTM.

In SwiftCompTM, an elemental coordinate system y′i can be defined for each element denoted
by three points a, b, c, with the line from point c to point a denoting y′1 direction and the line from
point c to point b denoting a line located in the y′1−y′2 plane; see Figure 12 for a sketch. Speaking in
the language of vectors, the new coordinate system is defined by three points with position vectors
in the local coordinate system (yi with êi as the unit vectors) by a, b, c. a− c denotes ê′1, b− c is
a vector in the y′1 − y′2 plane. With this information, one can compute the direction cosine matrix
relating yi to y′i according to the following steps:

• Obtain ê′1 through normalization of a− c: ê′1 = a−c
|a−c| ;

• Obtain ê′3 through normalization of the cross product of ê′1 and b− c: ê′3 = ê′1×(b−c)
|ê′1×(b−c)|

;

• Obtain ê′2 through the cross product of ê′3 and ê′1: ê′2 = ê′3 × ê′1.

SwiftCompTM allows the user to define the material properties in the local coordinate system
yi or in the material coordinate system. The material coordinate system could be the elemental
coordinate system or a coordinate system defined in such a way that it can be obtained by a simple
rotation about y′3 of the elemental coordinate system. Clearly for composite laminates, this simple
rotation corresponds to the layup angle.

Figure 12: Elemental coordinate system defined by three points.

6.3 Constituent Constitutive Models

Generally speaking, the constituents contained in a SG could be responsive to thermal, mechani-
cal, electric, and magnetic fields. If these effects are not coupled, the linear elastic behavior can be
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modeled using the Hooke’s law in Eq. (3).

To deal with uncoupled thermal, electric, and magnetic effects, conduction can be modeled
using the following constitutive relation:

q1
q2
q3

 = −

k11 k12 k13
k12 k22 k23
k13 k23 k33


T,1
T,2
T,3

 (25)

where qi is the heat flux, kij is the conductivity, and T,i is the gradient of the temperature T .
Since conduction is mathematically analogous to electrostatics, magnetostatics, and diffusion,
SwiftCompTM can also be used to predict effective dielectric, magnetic, and diffusive properties
of composite materials and the corresponding local fields. For example, to obtain the effective
dielectric properties, we just need to let qi denote the electric displacements, T denote the electric
potential, and kij denote the corresponding dielectric properties.

For coupled mutliphysics modeling, we will have piezoelectric and piezomagnetic effects as well
as pyroelectric, pyromagnetic, and electromagnetic effects. For linear behavior among all these
fields, the constitutive equations can be expressed as:

σij = Cijklεkl − ekijEk − qkijHk + Λijθ

Di = eiklεkl + kikEk + aikHk + piθ

Bi = qiklεkl + aikEk + µikHk +miθ

(26)

where Cijkl, ekij , qkij , and Λij are the elastic, the piezoelectric, the piezomagnetic, and the thermal
stress tensors, respectively (note that Λij = −Cijklαkl with αkl as the thermal expansion tensor);
σij and εij are the stress tensor and strain tensor, respectively; kik, aik, and µik are the dielectric,
electromagnetic, and magnetic permeability tensors, respectively; and pi and mi are the pyroelectric
and pyromagnetic vectors, and Di, Ek, Bi, and Hk are the electric displacement, electric field,
magnetic induction, and magnetic field vectors, respectively. θ denotes the difference between the
actual temperature and the reference temperature. SwiftCompTM does not restrict θ to be small. If
θ is not small, Λij , pi,mi are not the tangent or instantaneous properties, but the secant properties
which are defined as average over a change of temperature. For example, let αt(T ) denote the
tangent or instantaneous coefficient of thermal expansion (CTE), the secant CTE is defined as

α(T ) =
1

T − T1

∫ T

T1

αt(ζ)dζ =
1

θ

∫ T1+θ

T1

αt(ζ)dζ (27)

with T1 as the reference temperature and θ = T −T1. For convenience, SwiftCompTM uses tangent
or instantaneous properties for αij , pi,mi as inputs and computes the secant properties internally
for constitutive modeling of temperature dependent properties.

Linear multiphysics behavior is modeled based on the following energy functional corresponding
to the constitutive equation in Eq. (26):

U =
1

2
εTLε+ εTβθ −

∫ T

T1

∫ ζ

T1

cv(0, ρ)

ρ
dρdζ (28)
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where

ε = bε11 ε22 ε33 2ε23 2ε13 2ε12 − E1 − E2 − E3 −H1 −H2 −H3cT (29)

is a multiphysical field array containing the 3D strain field εij , the 3D electric field Ei, and the 3D
magnetic field Hi. The conjugate multiphysical field array σ can be expressed as

σ = bσ11 σ22 σ33 σ23 σ13 σ12 D1 D2 D3 B1 B2 B3cT (30)

L is a 12×12 multiphysics matrix containing all the necessary material constants for characterizing
fully coupled thermoelectromagnetoelastic materials such that

L =

C e q
eT −k −a
qT −aT −µ

 (31)

where C is a 6×6 submatrix for elastic constants, e is a 6×3 submatrix for piezoelectric coefficients,
q is a 6×3 submatrix for piezomagnetic coefficients, k is a 3×3 submatrix for dielectric coefficients,
a is a 3 × 3 submatrix for electromagnetic coefficients, and µ is a 3 × 3 submatrix for magnetic
permeability. Note C, k, µ, a are symmetric matrices. The explicit form of the 12× 12 matrix is as
follows 

C11 C12 C13 C14 C15 C16 e11 e21 e31 q11 q21 q31
C12 C22 C23 C24 C25 C26 e12 e22 e32 q12 q22 q32
C13 C23 C33 C34 C35 C36 e13 e23 e33 q13 q23 q33
C14 C24 C34 C44 C45 C46 e14 e24 e34 q14 q24 q34
C15 C25 C35 C45 C55 C56 e15 e25 e35 q15 q25 q35
C16 C26 C36 C46 C56 C66 e16 e26 e36 q16 q26 q36
e11 e12 e13 e14 e15 e16 −k11 −k12 −k13 −a11 −a12 −a13
e21 e22 e23 e24 e25 e26 −k12 −k22 −k23 −a12 −a22 −a23
e31 e32 e33 e34 e35 e36 −k13 −k23 −k33 −a13 −a23 −a33
q11 q12 q13 q14 q15 q16 −a11 −a21 −a31 −µ11 −µ12 −µ13
q21 q22 q23 q24 q25 q26 −a12 −a22 −a32 −µ12 −µ22 −µ23
q31 q32 q33 q34 q35 q36 −a13 −a23 −a33 −µ13 −µ23 −µ33



(32)

Other terms in Eq. (28) include β, which is a 12×1 matrix containing the second-order thermal
stress tensor Λij , the vector of pyroelectric pi, and the vector of pyromagnetic mi expressed as

β = bΛ11 Λ22 Λ33 Λ23 Λ13 Λ12 p1 p2 p3 m1 m2 m3cT (33)

The coefficient in the last term cv is the specific heat per unit volume at constant strain. Note
in the input, we actually input CTE αkl to be consistent with what has been normally used in
thermoelastic analyses. The code automatically computes Λij according to the following formula:

Λ11

Λ22

Λ33

Λ23

Λ13

Λ12


= −



C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66





α11

α22

α33

2α23

2α13

2α12


(34)
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Note in the right hand side, the off-diagonal CTEs are multiplied by 2 so that we have 2α12, 2α13,
2α23 according to the engineering notation.

As it is a constant confusion among users regarding the units used in the multiphysics model-
ing, we will provide a detailed description of those units. According to the International Standard
unit system, we use Pa (i.e., N/m2) for the elastic constants Cijkl and the stress field σij (note
the strain field εij is unitless), C/m2 for piezoelectric constants eijk and electric displacement Di,
N/(A·m) for piezomagnetic constants qijk and magnetic induction Bi, C/(V·m) for dielectric
constants kij , N/A2 (or N·s2/C2) for magnetic permeability µij , C/(A·m) for electromagnetic
coefficients aij , V/m for electric field Ei, A/m for magnetic field Hi, K for the temperature field θ
(note ◦C has the same unit dimension as K), 1/K for CTE αij (correspondingly Pa/K for thermal
stress coefficients Λij), C/m2·K for pyroelectric constants pi, N/(A·m·K) for pyromagnetic mi,
and J/(m3·K) for the specific heat cv. With all these units, the energy density U will be in the
unit of N/m2, which is the same as J/m3. Note N=C·V/m and J=N·m.

Although the units aforementioned are consistent with each other, direct use of these units will
introduce an extremely ill-conditioned material matrix L as for regular materials, we have Cijkl in
the order of 1011, while kij in the order of 10−9. Proper scaling is needed even if double precision is
used in computing. To this end, we define E∗i = Ei

109
, H∗i = Hi

109
, then the energy density in Eq. (28)

can be rewritten as:

U

109
=

1

2


ε
−E∗
−H∗


T C∗ e q

eT −k∗ −a∗
qT −a∗T −µ∗


ε
−E∗
−H∗

 +


ε
−E∗
−H∗


T 
−C∗α
p
m

 θ −
∫ T

T1

∫ ζ

T1

c∗v(0, ρ)

ρ
dρdζ

(35)
with

C∗ =
C

109
, c∗v =

cv
109

, k∗ = k × 109, a∗ = a× 109, µ∗ = µ× 109 (36)

The generalized Hooke’s law given in Eq. (26) can be rewritten in the following matrix form:

σ∗ = C∗ε− eE∗ − qH∗ + Λ∗θ

D = eT ε+ k∗E∗ + a∗H∗ + pθ

B = qT ε+ a∗TE∗ + µ∗H∗ +mθ

(37)

with σ∗ = σ
109

. For SwiftCompTM to perform multiphysics homogenization, we input C∗, c∗v, e, q, k
∗,

a∗, µ∗, α, p,m as material properties, and for SwiftCompTM to perform multiphysics dehomogeniza-
tion, we input ε, E∗, H∗ as the global fields. In other words, if the quantities are given in IS units,
we need to divide C, cv, E,H by 109, and multiply k, a, µ by 109, and all the other quantities remain
the same. The output effective properties are also scaled the same way as the input material proper-
ties. As far as the local fields out of dehomogenization are concerned, the mechanical displacement,
strains, electric displacements, and magnetic induction are the same as SI units, however one needs
to multiply the electromagnetic potential, the stresses, electric and magnetic fields with 109 to
convert these quantities in SI units. Note, it is just one suggestion for users to scale SwiftCompTM

inputs to avoid numerical difficulties. This scaling is done externally by the end user of the code.
One can certainly devise a different scaling following the same idea given here.
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7 SwiftCompTM Execution

SwiftCompTM along with a simple graphic user interface (GUI) based on Gmsh17 is available on
cdmHUB (https://cdmhub.org/resources/scstandard). To model Textile composites, SwiftCompTM

is integrated with TexGen18 which is also available on cdmHUB (https://cdmhub.org/resources/texgen4sc).
One only needs a browser connected to the Internet to execute these two codes. One can also re-
quest a copy of SwiftCompTM installed on their own computer.

SwiftCompTM is distributed in the form of SwiftCompx.y.zReleasePCMM-DD-YEAR.zip for
Windows operating systems and SwiftCompx.y.zReleaseLinuxMM-DD-YEAR.zip for Linux oper-
ating system with “x.y.z” denotes the version number. Unzipping the file is all you need to do for
installing SwiftCompTM. If you want to execute SwiftComp in a folder different from where you
stored the executable, you need to set the path to point to the folder containing the SwiftComp
executable. More details can refer to the Readme file.

Currently, we only provide executables for computers with Windows or Linux OS. The Gmsh-
based GUI, TexGen-bsed GUI, and interfaces with other commercial FEA software packages such
as Ansys, Abaqus, Nastran can also be freely downloaded from cdmHUB.org. Ansys-SwiftComp
GUI can be found at https://cdmhub.org/resources/1136. Abaqus-SwiftComp GUI can be found at
https://cdmhub.org/resources/1134. Nastran-SwiftComp GUI can be found at https://cdmhub.org/resources/1752.

Without a graphic user interface, SwiftCompTM should be executed under command line. For
example in Windows systems, using the system command cmd to bring up the command line win-
dow. Then use the system command cd to enter the right folder where the input files are in. Then
type SwiftComp arg1 arg2 arg3 arg4, where SwiftComp is the command name of SwiftCompTM,
arg1 is the complete input file name (including the extension), arg2 denotes the macroscopic model
to be constructed (1D for a beam model, 2D for a plate/shell model, and 3D for a 3D model). arg3
denotes whether homogenization, dehomogenization, or failure analysis will be carried out with H
for homogenization, L for dehomogenization, LG for dehomogenization with local results written
in Gmsh format, F for initial failure strength analysis, FE for initial failure envelope, FI for initial
failure indexes and strength ratios, HA for homogenization of aperiodic structures, LA for deho-
mogenization of aperiodic structures, and LAG for dehomogenization of aperiodic structures with
local results written in Gmsh format. arg4 denotes whether to use reduced integration for certain
elements: R for reduced integration, no arguments for full integration. For example, one wants to
construct a 3D model using the input file test.sc, then the command SwiftComp test.sc 3D H should
be used for a homogenization run. If local fields are also desired, the command SwiftComp test.sc
3D L should be used for a dehomogenization run. Note for a specific input file, dehomogenization
and initial failure related analyses (arg3=F, FE, or FI) can only be carried out after at least one
homogenization run and a corresponding file with extension *.glb storing extra inputs needed for
dehomogenization and initial failure related analyses should also exist in the same folder. For ex-
ample for the input file test.sc, we should have also prepared a file named test.sc.glb with details
described later for a successful dehomogenization or initial failure related analyses run.

SwiftCompTM inputs are in free format which means that the entries in input files can be
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separated by comma, space, and/or tab, scientific notation such as 1.0E − 5 can be used. Since
SwiftCompTM calculation is carried out using double precision, it can also handle inputs up to 15
significant digits.

8 SwiftCompTM Inputs for Homogenization Run

Although general-purpose preprocessors can been developed to prepare SwiftCompTM input files,
it is still beneficial for advanced users, particularly those who want to embed SwiftCompTM in their
own software environments, to understand the meaning of the input data.

8.1 Extra Inputs for Dimensionally Reducible Structures

To construct a beam/plate/shell model, the beginning of the input file has two extra lines for a
plate/shell model, and three extra lines for a beam model. The first line of the input file is an
integer to denote a specific model. If it is 0, it will construct a classical model (Euler-Bernoulli
beam model or Kirchhoff-Love plate/shell model). If it is 1, it will construct a shear refined model
(Timoshenko beam model or Reissner-Mindlin plate/shell model). For a beam model, it can also
be 2, indicating a Vlasov beam model, or 3 indicating a beam model with the trapeze effect.

The next line has three real numbers (k11, k12, k13 for beams) or two real numbers (k12, k21 for
shells) as the initial twist/curvatures of the structure. If the structure is initially straight, zeroes
should be provided instead.

To construct a beam model, two real numbers will be additionally provided on the third line
as the parameters to specify an SG which is an oblique cross-section, see Figure 13 for a sketch of
such a cross-section. The first number is cosine of the angle between normal of the oblique section
(y1) and beam axis x1. The second number is cosine of the angle between y2 of the oblique section
and beam axis (x1). The summation of the square of these two numbers should not be greater
than 1.0 in double precision. The inputs including coordinates, material properties, etc. and the
outputs including mass matrix, stiffness matrix, etc. are given in the oblique system, the yi coordi-
nate system as shown in Figure 13. For normal cross-sections, we provide 1.0 0.0 on this line instead.

8.2 Inputs for All Structural Models

The following line (note: to construct a 3D structural model, the previous three lines do not exist
and the input file starts from this line.) has four integers providing the problem control parameters
as:

analysis elem flag trans flag temp flag
The parameter analysis is an integer denoting the type of analysis: 0-elastic; 1-thermoelastic; 2-
conduction; 3-piezoeletric/piezomagnetic; 4-thermopiezoeletric/thermopiezomagnetic; 5-piezoeletro-
magnetic; 6-thermopiezoeletromagnetic; 7-viscoelastic; 8-thermoviscoelastic; 9-homogenization to
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Figure 13: Sketch of an oblique reference cross-section.

8-node 3D element; 10- homogenization to 20-node 3D element. It is pointed out here that piezo-
electric effects are mathematically equivalent to piezomagnetic effects. In other words, the same
equation or code used for modeling piezoelectric materials can be used to model piezomagnetic
materials if we replace electric displacement Di with magnetic induction Bi, electric field Ei with
magnetic field Hi, piezoelectric properties ekij with piezomagnetic properties qkij , pyroelectric
properties pi with pyromagnetic properties mi. Later, for analysis=3 or 4, in the inputs we used
piezoelectric materials as example. It is directly applicable to piezomagnetic materials.

The parameter elem flag is an integer denoting the type of elements. If elem flag is equal to 0,
the regular elements as shown in Figures 8, 9, 10 will be used for 1D, 2D or 3D SGs. If it is equal
to 1, elements with one dimension degenerated will be used to model the SG. For example, 2D
shell elements based on relative degrees of freedom will be used to mesh a 3D SG or 1D elements
will be used to mesh a 2D SG. If it is equal to 2, 1D elements will be used to mesh a 3D SG. For
example, 1D beam elements can be used to model a 3D SG composed of slender truss-like members.
Currently only regular elements are implemented.

The parameter trans flag is an integer denoting whether transformation of the element orienta-
tion is needed. If trans flag is equal to 0, element orientation is the same as the problem coordinate
system and transformation is not needed. If it is equal to 1, elemental coordinate systems are
defined for each element and elemental orientations will be provided in a later block for the trans-
formation.
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The parameter temp flag is an integer denoting whether the temperature is uniform within
the SG. For thermally coupled analysis (analysis=1, 4, 6), if temp flag is equal to 0, temperature
distribution within SG is uniform; if it is equal to 1, temperature distribution is not uniform and
nodal temperature should be provided to describe the temperature field. Note this input is used
only if it is a thermally coupled analysis.

If analysis=7 or 8, the next line will list three real numbers arranged as:
t0, te, dt

where t0 is the starting time, te is the ending time, and dt is the increment of time. Note, in
the current version we follow the conventional practice of thermoviscoelastic analysis. The real
time ranges from 10t0 to 10te with time increment of 10dt. The code will compute time-dependent
effective properties at 10t0 , 10t0+dt, . . . , 10te .

If the SG is aperiodic or partially periodic, the next line will list three integers arranged as:
py1 py2 py3

where py1, py2 py3 could be 1, or 0 indicating whether it is aperiodic or periodic along y1, y2, y3
directions, respectively. For example, for a 3D SG which is aperiodic along y2 direction, we will
have

0 1 0
It noted that for the 2D plate/shell model, only y1 or y2 can be periodic or aperiodic and for the
1D beam model, only y1 can be periodic or aperiodic.

The next line lists six integers arranged as:
nSG nnode nelem nmate nslave nlayer nsurf nodes

where nSG is the dimensionality of the SG, nnode is the total number of nodes, nelem is the total
number of elements, nmate is the total number of material types, nslave is the number of slave
nodes on periodic boundaries for periodic microstructures, and nlayer is the total number of layers
defined by different types of materials and layup angle. nsurf nodes is the total number of nodes for
the outside surfaces of the SG. For the current version, nsurf nodes is only implemented for analy-
sis=9 or 10. If nslave=0, SwiftCompTM will search for corresponding node on periodic boundaries.
For this reason, the SG must be regular rectangles (for 2D SG) or cuboids (for 3D SG) with the
FE mesh having corresponding nodes on periodic edges. For other periodic SG shapes, the paired
nodes on corresponding boundaries must be provided through setting nslave not equal to zero.

The next nnode lines are the coordinates for each node arranged as:
node no y1 y2 y3

where node no is an integer representing the unique number assigned to each node and y1, y2, y3
are three real numbers describing the location (y1, y2, y3) of the node (only y3 exists for 1D SGs,
and y2 and y3 exist for 2D SGs). Arrangement of node no is not necessary to be consecutive, but
all nodes from 1 to nnode should be present.

The next nelem lines list the layer number and nodes for each element. They are arranged as:
elem no mate id node 1 node 2 . . .

where elem no is the number of element, mate id is an integer to indicate the material number of
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the element, and node i (i = 1, 2, . . . ,) are nodes belonging to this element. If nlayer is not equal
to zero, then mate id should be replaced with layer id which will be defined later. Arrangement
of elem no is not necessary to be consecutive, but all elements starting from 1 to nelem should be
present. If the SG is meshed using regular elements (e.g., elements having the same dimension as
the SG,

• 1D elements could have up to 5 nodes. If a node is not present in the element, the value is 0;
see Figure 8.

• 2D elements could have up to 9 nodes. If a node is not present in the element, the value is 0.
If the fourth node is zero, it is a triangular element; see Figure 9.

• 3D elements could have up to 20 nodes. If a node is not present in the element, the value is
0. If the fifth node is zero, it is a tetrahedral element; If the fifth node is not zero, but the
seventh node is zero, it is a wedge element; see Figure 10.

If trans flag is equal to 1, the next nelem lines list the orientation for each element. They are
arranged as

elem no a1 a2 a3 b1 b2 b3 c1 c2 c3
where elem no is the number of element, a1, a2, a3 are coordinates of point a, b1, b2, b3 are coordi-
nates of point b, c1, c2, c3 are coordinates of point c. The local coordinate system for the element is
defined by the three points a, b, c as described previously. Arrangement of elem no is not necessary
to be consecutive, but all elements starting from 1 to nelem should be present.

If temp flag is equal to 1, the temperature distribution within the SG is not uniform, the next
nnode lines list the corresponding nodal temperature. They are arranged as:

node no T
where node no is the nodal number and T is the corresponding temperature.

If analysis is equal to 9, the next line lists the nodes of the macroscopic 3D 8-node element.
They are arranged as:

node 1 node 2 node 3 . . . node 8
where nodei corresponds to the 8 nodes of the macroscopic 3D 8-node element numbered in the
same order as those in Figure 10.

If analysis is equal to 10, the next line lists the nodes of the macroscopic 3D 20-node element.
They are arranged as:

node 1 node 2 node 3 . . . node 20
where nodei corresponds to the 20 nodes of the macroscopic 3D 20-node element numbered in the
same order as those in Figure 10.

If analysis is equal to 9 or 10, the next one or more lines list the nodes on the surfaces. The
total number of surface nodes is nsurf nodes. No specific format is needed.

If nslave is not equal to 0, the next nslave lines list the slave nodes and corresponding master
nodes periodic to the slave nodes. They are arranged as:
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slave node master node
where slave node is an integer indicating the node slaved to the master node denoted by mas-
ter node.

If nlayer is not equal to 0, the next nlayer lines list the definition for each layer. They are
arranged as:

layer id mate id angle
where layer id is the layer number, mate id is the material type, and angle is a real number for the
layup angle in degrees.

The next nmate blocks define the material properties. They are arranged as:
mat id isotropy ntemp

where mat id is the material type, and isotropy is an integer to indicate whether the material is
isotropic (0), orthotropic (1), or general anisotropic (2). The integer ntemp is number of material
property sets according to different temperature followed by ntemp blocks of real numbers:

Ti ρ
const1 const2 ....

where Ti, i = 1, . . . , ntemp is the temperature, ρ is the density, and the rest are material constants
the details of which will be given in the next section. For the convenience to compute secant values
contained in thermal properties, T1 is used as the reference temperature and Ti must be arranged
in an increasing fashion.

If analysis=7 or 8, the material properties could be provided by time dependent functions. The
first line of the block will become:

Ti ρ time function nprony
where time function is a character and nprony is an integer. If time function is C, properties do
not depend on time and nprony can be an arbitrary number and nprony is not used in the code.
This line will be followed by material constants input in the same way as for other analysis options.
If time function=P or T , nprony denotes the total number of property sets used to define the
time dependent properties. If time function=P, the time dependency is defined using the Prony
series and nprony is number of Prony series terms plus 1 because the long term properties are also
input in the first block. If time function=T, the time dependency is defined by a user defined time
function with linear interpolation between adjacent time values. The material block followed by
nprony sets of material properties arranged as

ti
const1 const2 ....

where ti is a real number indicating the real time if time function=T or the relaxation constants
if time function=P. If time function=P, t1 can be arbitrary because it is followed by the long
term properties and the corresponding t1 is not used in computing the time-dependent material
properties.
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8.3 Conductivity

For conduction analysis (analysis=2), if the material is isotropic (isotropy=0), there is only one
constant specifying the conductivity arranged as:

k

If isotropy=1 (orthotropic), there are three constants arranged as:
k11 k22 k33

where k11, k22, k33 are conductivities along three principal directions.

If isotropy=2 (general anisotropic), there are six constants arranged as:
k11 k12 k13

k22 k23
k33

where kij are the components of the second-order conductivity tensor.

8.4 Elastic Properties

For all other analyses, we need to first provide elastic properties. If isotropy=0, there are two
constants arranged as:

E ν
where E is the Young’s modulus, ν is the Poisson’s ratio. Elasticity theory restricts that Poisson’s
ratio must be greater than -1.0 and less than 0.5 for linear, elastic, isotropic materials, although
SwiftCompTM allows users to input values that are very close to those limits.

If isotropy=1, there are nine constants arranged as:
E1 E2 E3

G12 G13 G23

ν12 ν13 ν23
including Young’s moduli (E1, E2, and E3), shear moduli (G12, G13, and G23), and Poisson’s ratios
(ν12, ν13, and ν23). The convention of values is such that these values will be used to form the
Hooke’s law for the orthotropic material in Eq. (6).

If isotropy=2, there are 21 constants arranged as:
C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

C55 C56

C66

These values are defined using the Hooke’s law given in Eq. (3). For orthotropic and general
anisotropic materials, SwiftCompTM does not check the validity of the material inputs and it is
the user’s responsibility to make sure that the material properties satisfy the positive definiteness
requirement of the stiffness matrix and compliance matrix found in a typical textbook on mechanics
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of composite materials.

8.5 CTE and Specific Heat

For thermally coupled analysis (analysis=1, 4, 6), if isotropy=0, there are two constants arranged
as:

α cv
where α is the CTE and cv is the specific heat.

If isotropy=1, there are four constants arranged as:
α11 α22 α33 cv

where α11, α22, α33 are the CTEs along three principal directions.

If isotropy=2, there are seven constants arranged as:
α11 α22 α33 2α23 2α13 2α12 cv

where αij are the components of the second-order CTE tensor.

8.6 Piezoelectric, Dielectric, and Pyroelectric Coefficients

If analysis=3,4,5,6, we then need to provide 18 piezoelectric coefficients arranged as:
e11 e12 e13 e14 e15 e16
e21 e22 e23 e24 e25 e26
e31 e32 e33 e34 e35 e36

The piezoelectric coefficients should be followed by dielectric properties. If isotropy=0, there is
one constant for dielectric coefficient arranged as:

k

If isotropy=1, there are three constants arranged as:
k11 k22 k33

where k11, k22, k33 are the dielectric coefficients along three principal directions.

If isotropy=2, there are six constants arranged as:
k11 k12 k13

k22 k23
k33

where kij denotes the second-order dielectric tensor.

If analysis=4,6, the above data should be followed by three pyroelectric coefficients arranged
as:

p1 p2 p3
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8.7 Piezomagnetic Coefficients, Magnetic Permeability, Electromagnetic and
Pyromagnetic Coefficients

To carry out coupled piezoelectromagnetic analysis (analysis=5,6), we then need to provide another
18 piezomagnetic coefficients arranged as:

q11 q12 q13 q14 q15 q16
q21 q22 q23 q24 q25 q26
q31 q32 q33 q34 q35 q36

The piezomagnetic coefficients should be followed by magnetic permeability and electromag-
netic coefficients. If isotropy=0, there are two constants arranged as:

µ
a

with µ as the magnetic permeability, and a as the electromagnetic coefficient.

If isotropy=1, there are six constants arranged as:
µ11 µ22 µ33
a11 a22 a33

where µ11, µ22, µ33 are the magnetic permeability along three principal directions, and a11, a22, a33
are the electromagnetic coefficients along three principal directions.

If isotropy=2, there are 12 constants arranged as:
µ11 µ12 µ13

µ22 µ23
µ33

a11 a12 a13
a22 a23

a33
where µij denotes the second-order magnetic permeability tensor and aij denotes the second-order
electromagnetic coupling tensor.

If analysis=6, the above data should be followed by three pyromagnetic coefficients arranged
as:

m1 m2 m3

To clarify the order of input material properties, if analysis=6 and isotropy=2, the material
inputs should be arranged:

Ti ρ
C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

C55 C56

C66
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α11 α22 α33 2α23 2α13 2α12 cv
e11 e12 e13 e14 e15 e16
e21 e22 e23 e24 e25 e26
e31 e32 e33 e34 e35 e36
k11 k12 k13

k22 k23
k33

p1 p2 p3
q11 q12 q13 q14 q15 q16
q21 q22 q23 q24 q25 q26
q31 q32 q33 q34 q35 q36
µ11 µ12 µ13

µ22 µ23
µ33

a11 a12 a13
a22 a23

a33
m1 m2 m3

The material constants could be expressed either in the problem coordinate system y1, y2, y3 or
in the material coordinate system. However, it is usually more convenient and simpler to provide
these constants in the material coordinate system. If it is expressed in the material coordinate
system, SwiftCompTM will perform the necessary transformations. The input quantities should be
properly scaled as discussed previously for multiphysics modeling. It is also emphasized that if the
users uses an arrangement of stresses and strains different from what SwiftCompTM uses, proper
re-arrangement of the material properties is needed.

The following line is used to input ω, the volume of the domain spanned by the remaining
coordinates in the macroscopic structural model. For 3D structural models, ω will be the volume
of the homogenized material including both the volume of the material and the volume of possible
voids in the SG. ω can be computed by any mesh generator. For regular SG such as cubes, it can
be easily calculated by hand. Of course, for 1D SGs, the volume is the length and for 2D SGs, the
volume is the area. For plate/shell models, ω will be the area spanned by y1 and y2 for 3D SGs,
the length along y2 for 2D SGs and 1.0 for 1D SGs. For beam models, ω will be the length along
y1 for 3D SGs and 1.0 for 2D SGs.

Till now, we have prepared all the inputs necessary for the homogenization run.

9 SwiftCompTM Inputs for Dehomogenization Run

For dehomogenization, the user needs to provide additional information obtained from the macro-
scopic analysis including the macroscopic primary field (such as temperature for heat conduction
or displacement for the elastic analysis) and the generalized strain vector according to Eq. (29).
This information are provided in a text file corresponding to the input file name with extension glb.
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For example if the input file is test.sc, one should also prepare a file called test.sc.glb for dehomog-
enization holding the data as described below.

If analysis= 0, then the macroscopic displacements, rotations, and mechanical strains are to be
provided to compute the local displacement/strain/stress fields. The data are arranged as:

v1 v2 v3
C11 C12 C13

C21 C22 C23

C31 C32 C33

id1
ε̄ or σ̄

where v1, v2, and v3 are the macro displacements, Cij are macro rotations, and ε̄ contains the macro
generalized strains. Cij is defined such that Bi = Cijbj where bj is the base vector for undeformed
configuration and Bi is the base vector for the deformed configuration. For example, for a linear
analysis of 3D structures,

Cij =

1 + u1,1 u2,1 u3,1
u1,2 1 + u2,2 u3,2
u1,3 u2,3 1 + u3,3

 (38)

For linear analysis of plates/shells using the classical plate model (Kirchhoff-Love model),

Cij =

1 + u1,1 u2,1 u3,1
u1,2 1 + u2,2 u3,2
−u3,1 −u3,2 1 + u1,1 + u2,2

 (39)

For linear analysis of beams using the classical beam model (Euler-Bernoulli model),

Cij =

 1 u′2 u′3
−u′2 1 θ1
−u′3 −θ1 1

 (40)

where ui are the global displacements and θ1 is the twist angle.
Here id1 indicates whether generalized stresses or generalized strains are used for dehomoge-

nization run. If it is equal to 0, generalized stresses are used as inputs; if it is equal to 1, generalized
strains are used as inputs. For the 3D Cauchy continuum model ε̄ = bε11 ε22 ε33 2ε23 2ε13 2ε12cT ,
σ̄ = bσ11 σ22 σ33 σ23 σ13 σ12cT . For the Kirchhoff-Love plate/shell model, ε̄ = bε11 ε22 2ε12 κ11 κ22 2κ12cT ,
σ̄ = bN11 N22 N12 M11 M22 M12cT . For the Reissner-Mindlin plate/shell model, ε̄ =
bε11 ε22 2ε12 κ11 κ22 2κ12 γ13 γ23cT , σ̄ = bN11 N22 N12 M11 M22 M12 N13 N23cT . For
the Euler-Bernoulli beam model, ε̄ = bε11 κ11 κ12 κ13cT , σ̄ = bF1 M1 M2 M3cT . For the
Timoshenko beam model, ε̄ = bε11 γ12 γ13 κ11 κ12 κ13cT , σ̄ = bF1 F2 F3 M1 M2 M3cT .

If analysis=1, we need to provide an additional data for the macroscopic temperature difference
Tm to compute the thermoelastic effects. Tm is the difference between the current macroscopic
temperature with respect to the reference temperature T1. If temp flag=1, Tm is not used. The
data are arranged as:

v1 v2 v3
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C11 C12 C13

C21 C22 C23

C31 C32 C33

id1
ε̄ or σ̄
Tm

If analysis=2, we need to provide the following four values, arranged as
T
id1
T,1 T,2 T,3 or −q1 − q2 − q3

where T,i are the gradients of the macroscopic temperature, and qi are the macroscopic heat fluxes.
If id1 = 0, heat fluxes are used as inputs. If id1 = 1, temperature gradients are used as inputs.

If analysis= 3 or 4, we need to provide the following data for dehomogenization, which are
arranged as:

v1 v2 v3 φ∗

C11 C12 C13

C21 C22 C23

C31 C32 C33

id1
ε̄ or σ̄
Tm

with φ∗ as the scaled electric potential, ε̄ as the macro generalized strains, and σ̄ as the macro
generalized stresses. For 3D structures ε̄ = bε11 ε22 ε33 2ε23 2ε13 2ε12 − E∗1 − E∗2 − E∗3cT ,
σ̄ = bσ11 σ22 σ33 σ23 σ13 σ12 D1 D2 D3cT . For the Kirchhoff-Love plate/shell model,
ε̄ = bε11 ε22 2ε12 κ11 κ22 2κ12 −E∗1 −E∗2cT , σ̄ = bN11 N22 N12 M11 M22 M12 D1 D2cT .
For the Reissner-Mindlin plate/shell model, ε̄ = bε11 ε22 2ε12 κ11 κ22 2κ12 γ13 γ23 −E∗1 −E∗2cT ,
σ̄ = bN11 N22 N12 M11 M22 M12 N13 N23 D1 D2cT . For the Euler-Bernoulli beam model,
ε̄ = bε11 κ11 κ12 κ13 − E∗1cT , σ̄ = bF1 M1 M2 M3 D1cT . For the Timoshenko beam model,
ε̄ = bε11 γ12 γ13 κ11 κ12 κ13 D1cT , σ̄ = bF1 F2 F3 M1 M2 M3 D1cT . Here φ∗,i = −E∗i . If
temp flag=1, Tm is not used. If analysis is 3, the macroscopic temperature difference Tm does not
exist.

If analysis= 5 or 6, we need to provide the following data which are arranged as:
v1 v2 v3 φ∗ ψ∗

C11 C12 C13

C21 C22 C23

C31 C32 C33

id1
ε̄ or σ̄
Tm

with ψ∗ as the scaled magnetic potential, ε̄ as the macro generalized strains, and σ̄ as the macro
generalized stresses. For 3D structures ε̄ = bε11 ε22 ε33 2ε23 2ε13 2ε12 − E∗1 − E∗2 − E∗3 −
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H∗1 − H∗2 − H∗3cT , σ̄ = bσ11 σ22 σ33 σ23 σ13 σ12 D1 D2 D3 B1 B2 B3cT . For the
Kirchhoff-Love plate/shell model, ε̄ = bε11 ε22 2ε12 κ11 κ22 2κ12 −E∗1 −E∗2 −H∗1 −H∗2cT ,
σ̄ = bN11 N22 N12 M11 M22 M12 D1 D2 B1 B2cT . For the Reissner-Mindlin plate/shell
model, ε̄ = bε11 ε22 2ε12 κ11 κ22 2κ12 γ13 γ23 − E∗1 − E∗2 − H∗1 − H∗2cT , σ̄ =
bN11 N22 N12 M11 M22 M12 N13 N23 D1 D2 B1 B2cT . For the Euler-Bernoulli beam model,
ε̄ = bε11 κ11 κ12 κ13 −E∗1 −H∗1cT , σ̄ = bF1 M1 M2 M3 D1 B1cT . For the Timoshenko beam
model, ε̄ = bε11 γ12 γ13 κ11 κ12 κ13 −E∗1 −H∗1cT , σ̄ = bF1 F2 F3 M1 M2 M3 D1 B1cT .
Here ψ∗,i = −H∗i . If temp flag=1, Tm is not used. If analysis is 5, the macroscopic temperature
difference Tm does not exist.

If analysis= 9 or 10, we need to the following data which are arranged as:
ū11, ū12, ū13
ū21, ū22, ū23
. . .
ūn1, ūn2, ūn3

with ūi1, ūi2, ūi3 as the displacements of node i along y1, y2, y3 directions respectively. It is noted
that such displacements are not those measured in the global coordinate system of the macroscopic
analysis, but those measured in the elemental coordinate system of the macroscopic analysis.

10 SwiftCompTM Inputs for Failure Analysis

A corresponding homogenization analysis must be run before carrying out any failure analysis.

For failure analysis (including initial failure strength, initial failure index/strength ratio, and
initial failure envelope), the *.glb file will be used to store the data needed for failure analysis in-
stead. First, additional material properties are needed for each material at each given temperature
including a failure criterion and corresponding strength constants. Three lines will be inserted and
the inputs needed for failure analyses should be arranged as:
failure criterion num of constants
lc
const1 const2 const3 . . .
failure criterion is an integer identifier for the failure criterion. num of constants indicates the
number of strength constants needed for the corresponding failure criterion. lc is a real number indi-
cating the characteristic length used in the nonlocal approach for initial failure analysis. If lc is equal
to zero, the local approach based on element averaged values will be used. const1, const2, const3 . . .
are the corresponding strength constants. It is noted that this block of data should be correspond-
ing to the material block in the main input file. In other words, for each material with mat id, we
need to provide such information for each temperature.

failure criterion can be equal to 1, 2, 3, 4, 5, and another number greater than 10. For
isotropic material, 1 is the max principal stress criterion, 2 is the max principal strain criterion, 3
is the max shear stress criterion (also commonly called the Tresca criterion), 4 is the max shear
strain criterion, and 5 is the Mises criterion. For anisotropic materials, 1 is the max stress criterion
for anisotropic materials, 2 is the max strain criterion for anisotropic materials, 3 is the Tsai-Hill
criterion, 4 is the Tsai-Wu criterion and 5 is the Hashin criterion. 11 or a larger integer indicates
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a user-defined failure criterion. If failure criterion is equal to 1, 2, 3, 4, 5, num of constants is
not used. If it is a user-defined failure criterion, then num of constants will be used to input the
right number of strength constants. It is assumed that the number of strength constants will not
be greater than 9 for a material. If the material is isotropic, the failure criterion and corresponding
strength constants are defined as follows.

• If failure criterion is 1, the max principal stress criterion is used and two strength constants
are needed: one for tensile strength (X) and one for compressive strength (X ′), arranged as
X,X ′.

• If failure criterion is 2, the max principal strain criterion is used and two strength constants
are needed: one for tensile strength (Xε) and one for compressive strength (X ′ε), arranged as
Xε, X

′
ε.

• If failure criterion is 3, the max shear stress criterion (aka the Tresca criterion) is used and
one shear strength constant (S) is needed.

• If failure criterion is 4, the max shear strain criterion is used and one shear strength constant
(Sε) is needed.

• If failure criterion is 5, the Mises criterion is used and one strength constant (X) is needed.

If the material is not isotropic (transversely isotropic, orthotropic, or general anisotropic), the
failure criterion and corresponding strength constants are defined as follows.

• If failure criterion is 1, the max stress criterion is used and nine strength constants are
needed: three for tensile strengths (X,Y, Z) in three directions, three for compressive strengths
(X ′, Y ′, Z ′) in three directions, and three for shear strengths (R, T, S) in three principal planes,
arranged as X,Y, Z,X ′, Y ′, Z ′, R, T, S.

• If failure criterion is 2, the max strain criterion is used and nine strength constants are
needed: three for tensile strengths (Xε, Yε, Zε) in three directions, three for compressive
strengths (X ′ε, Y

′
ε , Z

′
ε) in three directions, and three for shear strengths (Rε, Tε, Sε) in three

principal planes, arranged as Xε, Yε, Zε, X
′
ε, Y

′
ε , Z

′
ε, Rε, Tε, Sε.

• If failure criterion is 3, the Tsai-Hill criterion is used and six strength constants are needed:
three for normal strengths (X,Y, Z) in three directions and three for shear strengths (R,S, T )
in three principal planes, arranged as X,Y, Z,R, T, S.

• If failure criterion is 4, the Tsai-Wu criterion is used and nine strength constants are
needed: three for tensile strengths (X,Y, Z), three for compressive strengths (X ′, Y ′, Z ′)
in three directions, and three for shear strengths (R, T, S) in three principal planes, arranged
as X,Y, Z,X ′, Y ′, Z ′, R, T, S.

• If failure criterion is 5, the Hashin criterion is used and six strength constants are needed:
two for tensile strengths (X,Y ), two for compressive strengths (X ′, Y ′) in two directions, and
two for shear strengths (R,S) in two principal planes, arranged as X,Y,X ′, Y ′, R, S.
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It is noted that for failure analysis, general anisotropic materials are also approximated using or-
thotropic materials due to limited number of strength constants. In SwiftCompTM, both the tensile
strengths and compressive strengths are expressed using positive numbers. In other words, in the
uniaxial compressive test along y1 direction, σ11 = −X ′ when material fails.

After the material block for strength parameters, we need to provide the following line in the
*.glb file containing one integer if analysis is not equal to 9 or 10.

id1
Here id1 indicates whether the strength is expressed in terms of generalized stresses or generalized
strains. If it is equal to 0, the strength is expressed in terms of generalized stresses; if it is equal to
1, it is expressed in terms of generalized strains.

For failure envelope analysis, we need to provide the following line in the *.glb file containing
two integers if analysis is not equal to 9 or 10.

istr1 istr2
Here istr1 and istr2 indicate the two load directions that one would like to predict a failure envelope
for. The values could be 1, 2, 3, 4,. . . , corresponding to the arrangement of the generalized stresses
(if id1 = 0) or generalized strains (if id1 = 1). For example for the 3D model, the stress/strain are
arranged in the order of 11, 22, 33, 23, 13, 12. If we want to draw a σ̄22—σ̄13 failure envelope, we
will have istr1 = 2, istr2 = 5.

For failure index analysis, this above line is not necessary. Instead we need to provide the
following line in the *.glb file containing n real numbers with n equal to the total number of gen-
eralized stresses or generalized strains.

str1 str2 str3 . . . strn
Here str1, str2, . . . , strn indicate the given loads used to compute the strength ratio and the failure
index. These values can be given in terms of generalized stresses or generalized strains depending
on whether the required strength outputs are in generalized stresses (id1 = 0) or generalized strains
(id1 = 1). If analysis is equal to 9 or 10, corresponding nodal displacements should be provided as
the inputs instead as those described at the end of the previous section.

Both input files, input file name and input file name.glb, should be ended with a blank line to
avoid any possible incompatibility of different computer operating systems. The input file can be
given any name as long as the total number of the characters of the name including extension is
not more than 256. For the convenience of the user to identify mistakes in the input file, all the
inputs are echoed in a file named input file name.ech. Error messages are also written at the end
of input file name.ech and on the output screen.

11 SwiftCompTM Outputs

Effective properties computed by SwiftCompTM are stored in input file name.k, including effective
stiffness matrix corresponding to Eq. (32), effective flexibility matrix (inverse of stiffness matrix),
effective thermal coefficients including CTEs, specific heat, pyroelectric coefficients, and pyromag-
netic coefficients.
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If the material can be approximated as orthotropic material, engineering constants correspond-
ing to the elastic stiffness matrix is also provided among the outputs.

Regarding the effective specific heat, there are two contributions Dθθ and Feff . If temp flag=0,
the effective specific heat can be calculated as

c̄v = Dθθ − TFeff

with T as the current temperature T = T1 + Tm. If temp flag=1, the effective specific heat can be
calculated as

c̄v =
Dθθ − T1Feff

θ̄2

with θ̄ as the average temperature of the SG.

The effective density of the SG is also listed as one output.

If analysis=9, the output will be a 24 × 24 effective element stiffness matrix for a 8-node 3D
element. If analysis=10, the output will be a 60×60 effective element stiffness matrix for a 20-node
3D element.

In the outputs of dehomogenization, the primary local field such as the displacement field for
elastic analysis or the temperature field for conduction analysis is reported at each node. However,
other fields calculated based on gradients from the primary local field such as stresses and strains
are usually more accurate if reported at Gaussian integration points. However, because nodal val-
ues are more convenient for postprocessing of the results, only nodal values are reported. If you
need Gaussian values, please contact the author.

The local 3D displacement results obtained through dehomogenization are stored in input file name.u.
The values are listed for each node identified by its location as:

node no u1 u2 u3
where ui are the local 3D displacements at this node. Note if analysis=2, the outputs in this file
are the local temperature for each node instead.

If analysis=3, 4, the outputs will be
node no u1 u2 u3 φ

∗

with φ∗ as the scaled electric potential.

If analysis=5, 6, the outputs will be
node no u1 u2 u3 φ

∗ ψ∗

with ψ∗ as the scaled magnetic potential.

The local 3D strain/stress results at nodes obtained through dehomogenization are stored in
input file name.sn. These values are identified by its location as:

y1 y2 y3 ε11 ε22 ε33 2ε23 2ε13 2ε12 σ11 σ22 σ33 σ23 σ13 σ12
where εij and σij are the components of the local 3D strain tensor and 3D stress tensor, respectively,
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at the node. Note if analysis=2, the outputs in this file are instead the local temperature gradient
and heat flux instead arranged as

y1 y2 y3 T,1 T,2 T,3 q1 q2 q3.

If analysis=3, 4, the outputs will be
y1 y2 y3 ε11 ε22 ε33 2ε23 2ε13 2ε12 −E∗1 −E∗2 −E∗3 σ11 σ22 σ33 σ23 σ13 σ12 D1 D2 D3

If analysis=5, 6, the outputs will be
y1 y2 y3 ε11 ε22 ε33 2ε23 2ε13 2ε12 −E∗1 −E∗2 −E∗3 −H∗1 −H∗2 −H∗3 σ11 σ22 σ33 σ23 σ13 σ12 D1

D2 D3 B1 B2 B3.

If the local results are desired to be output in Gmsh format (arg3=LG or LAG), the recovered
3D strain/stress results at nodal points are stored in input file name.sn. This file contains a block
for each generalized strain or stress component as follows:

elem no nodes nodal value
where elem no is the corresponding element number, nodes is the total number of nodes in this
element, and nodal values is an array holding nodes nodal values of the strain or strain compo-
nent. Each block contains nelem lines and blocks are separated by a blank line. For example, if
analysis=5,6, there will be 24 blocks of data arranged according to the order first for the gener-
alized strains, then for the generalized stresses according to SwiftCompTM convention specified in
Eqs. (29) and (30).

The above local 3D strain/stress results are expressed in the problem coordinate system. Some-
times it is more convenient to have strain/stress values expressed in the material coordinate system.
These values at nodal points are stored in the file input file name.snm.

The failure analysis results are stored in the file input file name.fi, the content of which depends
on the type of analysis. For failure index analysis (FI), the failure index and strength ratio for each
element are stored in input file name.fi with the first number is an integer indicating the element
number and the trailing two numbers are the initial failure index and the initial strength ratio for
each element under given loads. For Hashin failure criterion, the failure modes are also output
for the corresponding element. For initial strength analysis (F), this file stores the initial failure
strengths in both tensile and compressive directions. For failure envelope analysis (FE), this file
stores the failure envelope points with the first number being the number of the failure point, the
two trailing read numbers being the values for corresponding given two loading directions needed
for plotting the failure envelope.

All these output files are in pure text format and can be opened and edited by any text editor.

12 SwiftCompTM Maintenance and Tech Support

SwiftCompTM is available in the cloud on cdmHUB and users can execute the code within a
web browser. A group named Prof. Yu’s Research Group in the Cloud is specifically set up on
cdmHUB for information exchange related with SwiftCompTM. Users are highly encouraged to join
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the group through http://cdmhub.org/groups/yugroup to receive most recent news of SwiftCompTM,
ask questions, and share with others. For the sake of efficiency and reusability, please post your
questions in the group. A page of SwiftCompTM FAQ will be constantly updated in the group.
Before you ask questions, please do the following:

1. Read this manual carefully, if you have not done so;

2. Check the error message at the end of input file name.ech;

3. Make sure that you have provided the right input data through input file name.ech, which is
your input file understood by SwiftCompTM;

4. Check the SwiftCompTM FAQ page in the group;

5. Post your question in the discussion section of the group.

13 Epilogue

Although still in its early development age, SwiftCompTM has demonstrated great potential for
multiscale constitutive modeling of materials and structures. Its accuracy has been extensively ver-
ified by its developers and users. The performance and robustness of the code will be continuously
improved based on feedback from its users throughout the world. Although SwiftCompTM has
been designed in such a way that end users do not have to fully understand its theoretical founda-
tion (the details of which are spelled out in SwiftCompTM related publications), further questions
are inevitable because SwiftCompTM represents a unique unified approach for modeling composite
structures and materials which is drastically different from most conventional micromechanics and
structural mechanics approaches. Nevertheless, it should be clear that SwiftCompTM is emerging
as a general-purpose computational tool for engineers to perform multiscale constitutive modeling
of composites.
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